跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳誠智
研究生(外文):Cheng-Zhi Wu
論文名稱:氧化鋅光電元件特性之研究
論文名稱(外文):An Investigation of ZnO based Optoelectronic Devices
指導教授:姬梁文姬梁文引用關係
學位類別:博士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:123
中文關鍵詞:金屬-半導體-金屬光偵測器氧化鋅奈米柱可撓式基板聚對苯二甲酸乙二酯薄膜電晶體
外文關鍵詞:Metal-semiconductor-metal(MSM)PhotodetectorsZnONanorodDopingFlexible substratesPETThin-film transistors(TFT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:673
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於下一世代元件結構中,奈米電子、光子晶體與磁性元件的整合研發具有高度的發展潛力。其中氧化鋅半導體具有無毒、低成本、直接寬能隙、極化等特性,因此ZnO被認為是非常重要且具有未來光電元件應用的材料。本論文研究金屬摻雜氧化鋅材料之特性、並在不同材質的基板研製光電元件、場效電晶體與其他元件整合成OEIC之應用、以及元件的撓曲特性測試。論文的主要研究可以分為以下四個部分討論。
首先,我們探討氧化鋅為基礎製作的金屬-半導體-金屬(MSM)光偵測器比較單層與加上氧化鋅覆蓋層在可撓式高分子基板-聚對苯二甲酸乙二醇酯(PET)進行比較分析,其中以低溫濺鍍法濺鍍ZnO薄膜並加以分析。金屬銀與氧化鋅之間的蕭特基能障為0.782 eV。光偵測器元件結構具有氧化鋅覆蓋層(堆疊結構:氧化鋅/銀/氧化鋅/PET)顯示了一個比單層結構更高的紫外光-可見光互斥比為1.56×103。不僅是在紫外區域光電流顯著增加,而且在可見光區也有抑制效果。元件在370 nm波長和3 V偏壓下顯示出很高的紫外光響應度,在具有氧化鋅覆蓋層和氧化鋅單層結構的光偵測器元件分別為3.8×10-2和2.36×10-3 A/W,其對應於量子效率則分別為1.13和0.07 %。
另外,探討Ti/Au與 Mg0.24Zn0.76O和ZnO薄膜的歐姆接觸特性,並應用MSM光偵測器於玻璃基板上的元件特性分析。由UV/Vis光譜測量的光學能隙顯示出Mg0.24Zn0.76O薄膜具有較大於氧化鋅薄膜(3.25 eV)的光學能隙3.54 eV。在以Mg0.24Zn0.76O製作MSM結構紫外光UV光偵測器,結果表示相比於氧化鋅薄膜元件有較高的紫外光-可見光互斥比2.78×103,可歸因於Mg0.24Zn0.76O光偵測器具有較低的暗電流0.08 pA和在XRD於(002)方向具有較小半高寬0.34°結果,表示Mg0.24Zn0.76O比氧化鋅具有更好的晶體品質。在5 V偏壓下和分別照光於350和380 nm時,顯示出,以Mg0.24Zn0.76O和ZnO的MSM光偵測器元件表現出的光響應度分別為0.4和0.32 A/W。
其次,我們成長具方向性氧化鋅奈米柱陣列,利用X射線繞射、掃描式電子顯微鏡、UV/Vis光譜、光致發光量測(PL)和微拉曼光譜量測結構和光電特性。顯示出擇優取向成長的纖鋅礦ZnO奈米柱結構成長方向為(002) C軸的方向。並應用至蕭特基光電二極體的製作。元件在370 nm波長和5 V偏壓下顯示出紫外光響應值(0.051 A/W),這相當於21%的量子效率。
我們也在可撓式(PET)基板製作氧化鋅奈米柱MSM UV光偵測器並進行特性分析。結果顯示,相較於傳統的氧化鋅薄膜光感測元件,氧化鋅奈米柱的光感測元件有較高的光響應值和紫外光-可見光互斥比,分別是0.0409 A/W和282.59。製作新結構的光偵測元件顯示出較高的光響應值,可歸因於氧化鋅奈米柱的高比表面積特性。而氧化鋅表面存在的高密度的表面電洞缺陷對氧的吸附和解吸附導致了持續光導效應,促進載子傳送至元件。
另外,我們也探討了往深紫外光工作的MgZnO奈米柱光偵測元件的特性分析。結果也顯示出在UV/Vis光譜光吸收邊界,MgZnO奈米柱有短波長的光吸收特性(4.76 eV,260 nm)。MgZnO奈米柱光偵測元件的光響應值和紫外光-可見光互斥比分別為2.01 A/W和6.24×102。可歸因為MgZnO奈米柱高表面體積比和鎂的摻雜。實驗結果說明了MgZnO奈米柱有很大的潛力應用在深紫外線光電元件。
我們也研究利用液相沉積法(六水硝酸鋅,硝酸鎂,硝酸鋁)在90 °C成長溫度製作鎂-鋁共摻雜氧化鋅奈米柱陣列的結構和光學特性。在不同實驗條件生長的鎂-鋁共摻雜氧化鋅奈米柱的物理性能和光學特性,以X射線繞射、掃描式電子顯微鏡、紫外可見分光光度計、能量色散光譜儀,和光致發光光譜儀分析。結果顯示鎂-鋁共摻雜氧化鋅奈米柱棒具有成長方向(002) 的纖鋅礦結構,其中鎂原子沿c軸方向替代了鋅的位置和鋁共摻雜。我們在鎂-鋁共摻雜氧化鋅奈米柱陣列成功地結合了低電阻率的ZnO:Al和能隙調變的MgZnO。UV/Vis光譜光吸收邊界顯示了AlMgZnO奈米柱具有在短波長的光吸收反應(3.92 eV,316 nm)。而AlMgZnO奈米柱光偵測元件有深紫外線的光響應值和紫外光-可見光互斥比,分別為0.3 A / W和636.3。這些結果表明了氧化鋅為基礎的寬帶隙材料獨特的光學和電學可調性,有潛力作為未來的電子元件。
最後我們製作在可撓式基板(聚對苯二甲酸乙二醇酯,PET)以氧化鋅薄膜作為通道和銦錫氧化物(ITO)作為源、漏極的高性能半透明的薄膜電晶體(TFTs)。利用低溫濺射法在可撓式基板上製作元件。半透明電晶體元件具有低工作電壓(5 V),高開/關比(4.1 × 108),以及元件柵極長度(L)為8 μm於可撓式基板的閘極漏電流和透明度分別為12 nA和75 % (550 nm)。另外,氧化鉿閘極介電層製作ZnO-TFTs可撓式的元件,並探討不同的彎曲的條件下閘極漏電流(IG),漏源電流(IDS),開/關電流比(Ion/off),和臨界電壓(Vth)元件特性分析。
最後,我們還探討了ZnO-TFT 元件之應用,利用ZnO-TFT 製作顯示器相關應用電路驅動LED和ZnO-TFT以電極連接於紫外線探測器,ZnO-TFT通過調整柵極電壓的以提高後者的光電流效率。當ZnO-TFT接通閘極偏壓 5 V時,相較於由偏壓為 0 V關閉通道,光電二極管的光電流效率增加了3倍。此外,我們成功地製作出可撓式元件(氧化鋅透明電薄膜電晶體,氧化鋅奈米柱光偵測元件)和操作在不同的彎曲條件下電流-電壓量測,並以原子力顯微鏡、紫外可見分光光度計去分析特性變化。


Developing integrated nanoelectronic, nanophotonic and nanomagnetic devices draw highly attractive potential as next-generation device architecture. ZnO-based semiconductors have been regarded as one of the strongest candidates for optoelectronic device considering their non-toxic, low cost, a direct wide band gap, electronic, optical, and piezoelectric properties. This dissertation describes the fabrication and characterization of optoelectronic devices (photodetectors, photoconductor, and field-effect transistors) with metal doping ZnO in glass and flexible substrates. The main investigation can be divided into the following four parts.
First, we elucidate the characteristics of ZnO-based metal-semiconductor-metal photodetectors with and without a ZnO cap layer were fabricated on flexible substrates of poly(ethylene terephthalate) (PET) for comparative analysis. The ZnO films were prepared by a low-temperature sputtering process. The Schottky barrier height at the Ag/ZnO interface is also determined to be 0.782 eV. The photodetector with a ZnO cap layer (stack structure: ZnO/Ag/ZnO/PET) shows a much higher UV-to-visible rejection ratio of 1.56×103 than that without. This can be attributed to the photocurrents that are not only significantly increased in the UV region but also slightly suppressed in the visible region for such a novel structure. With an incident wavelength of 370nm and an applied bias of 3 V, the responsivities of both photodetectors with and without a ZnO cap layer are 3.8×10-2 and 2.36×10-3 A/W, which correspond to quantum efficiencies of 1.13 and 0.07 %, respectively.
Additionally, the Ti/Au Ohmic contacts to both Mg0.24Zn0.76O and ZnO film-based metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on glass substrates for comparative analysis. The transmittance spectra measured around the optical energy gap revealed that Mg0.24Zn0.76O films have a larger optical energy gap (3.54 eV) than ZnO films (3.25 eV). Mg0.24Zn0.76O MSM-structured ultraviolet (UV) PDs show a much higher UV-to-visible rejection ratio of 2.78×103 than those made of ZnO films. This can be attributed to the low dark current (0.08 pA) of the Mg0.24Zn0.76O UV PDs and the small full width at half maximum (0.34°) of the Mg0.24Zn0.76O (002) x-ray diffraction peak, indicating better crystal quality than that of ZnO. With an applied bias of 5 V and illuminations at 350 and 380 nm, the Mg0.24Zn0.76O and ZnO film-based MSM PDs exhibited responsivities of 0.4 and 0.32 A/W, respectively.
Second, we demonstrate the structural and optoelectronic characteristics of the well-aligned ZnO nanorod arrays were achieved by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence (PL) and micro-Raman spectroscopy. The results indicated that the well-aligned ZnO nanorod with wurtzite structure was preferred oriented in the (002) c-axis direction. ZnO nanorod-based Schottky-barrier photodiodes has been also fabricated and characterized. With an incident wavelength of 370 nm and 5 V applied bias, it was found that maximum photoresponsivity of the photodiode was 0.051 A/W, which corresponded to a quantum efficiency of 21 %.
We also describe the fabrication of metal-semiconductor-metal ultraviolet photodetectors on flexible polyethylene terephthalate (PET) substrates with ZnO nanorods have been characterized. The photoresponsity and UV-to-visible rejection ratio of the ZnO nanorod-based sensor were 0.0409 A/W and 282.59, respectively. Compared to a traditional ZnO photodetector without nanorods, the fabricated novel photodetector showed much higher photoresponsity which could strongly depend on oxygen adsorption and desorption in the presence of trap states at the nanorods surface. It can be attributed to high surfaceto-volume ratio of ZnO nanorods.
Additionally, the deep-ultraviolet photodetectors on glass substrates with MgZnO nanorods have been characterized. The measured transmittance spectra around the absorption edge results reveal that the MgZnO nanorods have the absorption edge (4.76 eV, 260 nm). The photoresponsity and UV-to-visible rejection ratio of the MgZnO nanorod-based photodetectors were 2.01 A/W and 6.24×102, respectively. It can be attributed to high surface-to-volume ratio of MgZnO nanorods and doping the Mg. The improved performance reveals that the MgZnO nanorods have great potential applications in deep-ultraviolet optoelectronic devices.
We also describe the structural and Optical characteristics of the Mg-Al codoping ZnO nanorod arrays were fabricated at temperatures as low as 90 °C via a liquid phase deposition using zinc nitrate hexahydrate, magnesium nitrate, aluminium nitrate. Physical properties of the as grown ZnO nanorod arrays and optical properties of the fabricated devices will be also discussed by means of X-ray diffraction, scanning electron microscopy, UV-Vis spectrophotometer, energy dispersive spectrometer, and photoluminescence. The results indicated that the well-aligned Mg-Al codoping ZnO nanorod with wurtzite structure was preferred oriented in the (002) c-axis direction. The structural optical characteristics observed in this study are the result of the combined effect of structural defects, the substitution of Mg into Zn site along the c axis, and codoping of Al. Finally, we succeeded in combining the low resistivity of ZnO:Al and the band gap shift of MgZnO in Mg-Al codoping ZnO nanorod arrays. The measured transmittance spectra around the absorption edge results reveal that the AlMgZnO nanorods have the absorption edge (3.92 eV, 316 nm). The photoresponsity and UV-to-visible rejection ratio of the AlMgZnO nanorod-based photodetectors were 0.3 A/W and 636.3, respectively. These results demonstrate the unique tunability of the optical and electrical properties of the ZnO-based wideband gap material for future electronic devices.
Finally, we demonstrate high-performance semitransparent thin-film transistors (TFTs) on flexible substrates (polyethylene terephthalate, PET) with ZnO thin films as the active channel and indium tin oxide (ITO) as the source, drain, and gate electrodes. The transistors were prepared through low-temperature sputtering, which allowed device fabrication even on flexible substrates. Transparent transistors with a low operating voltage (5 V), high on/off ratio (4.1 × 108), and a gate length of 8-µm were built on flexible substrates; the gate leakage current and transparency were found to be approximately 12 nA and 75 % (550 nm) on average, respectively. In addition, the flexible device sputter-HfO2 gate dielectric layer was fabricated and successfully operated under different bend conditions for gate leakage current (IG), drain-source current (IDS), current on/off ratio (Ion/off), and threshold voltage (Vth).
Additionally, we also describe the fabrication of driving LED(Light Emitting Diode) of ZnO-TFT for display applications and ZnO -TFT is connected electrically to the ultraviolet photodetectors in order to enhance the latter’s photocurrent efficiency by adjusting the gate voltage of the TFT. When the TFT is switched on by biasing a gate voltage of 5 V, the photocurrent efficiency of the photodiode is three times higher than that when the TFT is switched off by biasing a gate voltage of 0 V. In addition, the flexible device (ZnO-TFTs and ZnO nanorod-PDs)fabricated and successfully operated under different bend conditions for I-V, AFM, and UV/Vis.


中文摘要 ………………………………………………… i
英文摘要 ………………………………………………… iv
誌謝 ………………………………………………… vii
表目錄 ………………………………………………… x
圖目錄 ………………………………………………… xi
第一章 緒論…………………………………………… 1
1.1 光偵測器與電晶體之發展…………………… 1
1.2 軟性電子發展及特性………………………… 8
1.2.1 塑膠基板的發展……………………………… 8
1.2.2 塑膠基板特性………………………………… 9
1.3 研究動機……………………………………… 12
第二章 文獻探討……………………………………… 16
2.1 氧化鋅基本特性……………………………… 16
2.1.1 化學性質……………………………………… 16
2.1.2 物理性質……………………………………… 17
2.1.3 製作方法……………………………………… 18
2.1.4 應用領域……………………………………… 19
2.2 氧化鋅奈米結構及摻雜特性………………… 23
2.3. 軟電技術與檢測標準………………………… 26
2.3.1 標準制訂掌握先機…………………………… 26
2.3.2 撓曲檢測機台的發展與應用………………… 26
2.3.3 軟性薄膜基板檢測技術……………………… 27
2.4 氧化鋅國內外相關研究……………………… 29
2.4.1 國外部份……………………………………… 29
2.4.2 國內部分……………………………………… 34
第三章 研究內容與方法……………………………… 41
3.1 金屬半導體接觸理論………………………… 41
3.2 接觸電阻……………………………………… 42
3.3 基本操作原理………………………………… 44
3.3.1 光偵測器……………………………………… 44
3.3.2 電晶體工作原理……………………………… 44
3.3.3 薄膜應力生成之原理………………………… 47
3.3.4 液相沉積法成長奈米結構…………………… 48
第四章 實驗架構及步驟……………………………… 52
4.1 實驗架構……………………………………… 52
4.2 氧化鋅薄膜和奈米結構……………………… 56
4.2.1 氧化鋅薄膜及摻雜金屬……………………… 56
4.2.2 氧化鋅奈米結構及摻雜金屬………………… 56
4.3 材料分析及金屬摻雜影響…………………… 59
第五章 氧化鋅薄膜及摻雜應用於光偵測器………… 69
5.1 前言…………………………………………… 69
5.2 實驗方法……………………………………… 70
5.3 結果與討論…………………………………… 71
第六章 氧化鋅奈米結構及摻雜應用於光偵測器…… 75
6.1 前言…………………………………………… 75
6.2 實驗方法……………………………………… 77
6.3 結果與討論…………………………………… 78
第七章 氧化鋅薄膜場效電晶體及OEIC應用………… 83
7.1 前言…………………………………………… 83
7.2 實驗方法……………………………………… 83
7.3 結果與討論…………………………………… 84
7.4 OEIC應用……………………………………… 85
7.4.1 OEIC分類……………………………………… 85
7.4.2 以ZnO-TFT驅動發光二極體(LED)元件之應用 86
7.4.3 以ZnO-TFT放大器光電元件之應用……………86
第八章 基板撓曲於元件特性影響…………………… 93
8.1 彎曲條件定義………………………………… 93
8.2 元件撓曲特性影響…………………………… 94
第九章 結論與未來展望……………………………… 100
9.1 結論…………………………………………… 100
9.2 未來展望……………………………………… 101
參考文獻 ………………………………………………… 104
英文論文大綱…………………………………………… 118
簡歷 ………………………………………………… 123


[1]F. L. Yang, et al. 2004, “5nm-gate Nanowire FinFET, ”Symposium on VLSl Technology Digest of Technical Papers, pp. 196-197.
[2]S. Ecoffey, et al. 2005, “A New Logic Based on Hybrid MOSFET-polysilicon Nanowires, ”IEEE International Electron Devices Meeting Technical Digest, pp. 277-280.
[3]L. Risch, et al. 2004, “Multi Gate Transistors and Memory Cells for Future CMOS Generation, ”Technical Digest IEEE Silicon Nanoelectronics Workshop, pp. 1-2, 2004.
[4]X. Duan, et al. 2003, “High-performance Thin-film Transistors Using Semiconductor Nanowires and Nanoribbons,”Nature, vol. 425, pp. 274-278.
[5]Y. Cui , et al. 2001, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, ”Science, vol. 293, pp. 1289-1292
[6]Z. Li, et al. 2004, ” Sequence-specific Label-free DNA sensors Based on Silicon Nanowires,”Nano Letters, vol. 4, pp. 245-247.
[7]J. E. Jang, et al. 2005, ”Nanoelectromechanical DRAM for Ultra-large-scale Integration, ”IEEE International Electron Devices Meeting Technical Digest, pp. 269-272.
[8]Klaus Schadow, 2007, “MEMS / Nanotechnology Integration for Bio-Medical Applications, ”NATO Research and Technology Organisation and NATO Undersea Research Centre.
[9]T. M. Barnes, et al. 2004, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition, ”Journal of Applied Physics, vol. 96, pp. 7036-7044.
[10]H. Kato, et al. 2003, “Homoepitaxial Growth of high-quality Zn-polar ZnO films by plasma-assisted molecular beam epitaxy, ”Japanese Journal of Applied Physics, vol. 42, pp. L1002-L1005.
[11]Y. I. Alivov, et al. 2003, “Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates, ”Applied Physics Letters, vol. 83, pp. 4719-4721.
[12]S. Liang, et al. 2001, “ZnO Schottky ultraviolet photodetectors, ”Journal of Crystal Growth, vol. 225, pp. 110-113,.
[13]A. Mang, et al. 1995, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure, ”Solid State Communications, vol. 94, pp. 251-254.
[14]Setiawan, et al. 2004, “Characteristics of dislocations in ZnO layers grown by plasma-assisted molecular beam epitaxy under different Zn/O flux ratios, ”Journal of Applied Physics, vol. 96, pp. 3763-3768.
[15]E. M. Kaidashev, et al. 2003 “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, ”Applied Physics Letters, vol. 82, pp. 3901-3903.
[16]Hitoshi Aoki, et al. 1996, “Dynamic Characterization of a-Si TFT-LCD Pixels, ”IEEE Transactions On Eelectron Devices, vol. 43, No. 1, pp.31-39.
[17]Youji INOUE, et al. 2005, “Organic Thin-Film Transistors with High Electron Mobility Based on Perfluoropentacene, ”Journal of Applied Physics, vol. 44, no. 6A, pp. 3663–3668.
[18]趙祖佑,,2007,”應用更多元軟性電子技術開啟產業新商機”,電子工程專輯,新聞和趨勢,7月。
[19]洪金賢,2007,〝特別企劃軟性電子材料技術專題與奈米碳材技術專題〞,材料世界網,工業材料雜誌,243期,頁159-168,三月。
[20]C.W. Tang, et al. 1987, “Organic Electroluminescent Diodes, ”Applied Physics Letters, 51, pp. 913 -915.
[21]J. H. Burroughes, et al. 1990, “Small molecules Conjugated polymers OLED materials, ”Nature, vol. 347, pp. 539-541.
[22]田宏隆,1993,”平面顯示器用可撓式塑膠基材技術與運用”,工業材料雜誌, 195期,頁156-164。
[23]Jie Xiang, et al. 2006, “Ge/Si nanowire heterostructures as high-performance field-effect transistors, ”Nature, vol. 441, pp. 489-493.
[24]T. Kiyoshi, et al. 2007, “Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices, ”Springer. pp. 357. ISBN3540472347.
[25]C. Klingshirn, 2007, “ZnO: Material, Physics and Applications, ”Journal of Chemical Physics and Physical Chemistry, vol. 8, pp. 782-803.
[26]K. Hiruma, et al. 1995, “Growth and optical properties of nanometer-scale GaAs and InAs whiskers, ”Journal of Applied Physics, vol. 77, no. 2, pp. 447–462.
[27]Y. Li, et al. 2000, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, ”Applied Physics Letters, vol. 76, pp. 2011-2013.
[28]B. P. Zhang, et al. 2004, “Synthesis and optical properties of single crystal ZnO nanorods, ”Nanotechnology, vol. 15, pp. S382- S388.
[29]T. P. Chow, et al. 1997, “Wide Bandgap Semiconductor Power Devices, ”Materials Research Society Symposium Proceedings, vol. 483, pp. 89.
[30]呂婉華,2003,“以沉澱法製備氧化鋅及合成步驟對結晶粒徑的影響”,國立交通大學材料科學與工程學系,碩士論文。
[31]Z. K. Tang, et al. 1998, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, ”Applied Physics Letters, vol. 72, pp. 3270-3272.
[32]D. C. Reynolds, et al. 1996, “Optically pumped ultraviolet lasing from ZnO, ”Solid State Communications, vol. 99, pp. 873 -875.
________________________________________
[33]D. M. Bagnall, et al. 1996, “Optically pumped lasing of ZnO at room temperature, ” Applied Physics Letters, vol. 70, pp. 2230-2232.
[34]D. S. Ginley, et al. 2000, “Transparent conducting oxides, ”MRS Bull, vol. 25, no. 8, pp. 15-65.
[35]K. Ellmer, et al. 2001, “Resistivity of polycrystalline zinc oxide films: current status and physical limit, ”Journal of Physics D: Applied Physics, vol. 34, pp. 3097-3108.
[36]A. Ohtomo, et al. 1998, “MgxZn1-xO as a II-VI widegap semiconductor alloy, ”Applied Physics Letters, vol. 72, pp. 2466-2468.
[37]T. Makino, et al. 2001, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films, ”Applied Physics Letters, vol. 78, pp. 1237-1239.
[38]M. Lorenz, et al. 2003, “Optical and electrical properties of epitaxial (Mg,Cd)xZn1-xO, ZnO, and ZnO:(Ga,Al) thin films on c-plane sapphire grown by pulsed laser deposition, ”Solid-State Electronics, vol. 47, pp. 2205–2209.
[39]朱仁江,2006,“ZnO摻雜及其特性研究”,重慶師範大學,碩士論文。
[40]T. Yamamoto, et al. 1999, “Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO, ”Japanese Journal of Applied Physics, vol. 38, pp. L166-L169.
[41]M. Joseph, et al. 2001, “Fabrication of the low-resistive p-type ZnO by codoping method, ”Physica B, vol. 302/303, pp. 140-148.
[42]M. Sanmyo, et al. 2003, “Preparation of p-type ZnO films by doping of Be-N bonds, ”Chemistry of Materials, vol. 15, pp. pp. 819-821.
[43]J. M. Bian, et al. 2004, “Deposition and elect rical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis, ”Applied Physics Letters, vol. 84, pp. 541-543.
[44]L. G. Wang, et al. 2003, “Cluster-doping approach for wide-gap semiconductor: The case of p-type ZnO, ”Physical Review Letters, vol. 90, pp. 256401-256404.
[45]T. Dietl, et al. 2000, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, ”Science, vol. 287, pp. 1019-1022.
[46]D. Olvera, et al. 2000, “Chemical stability of doped ZnO thin films, ”Journal of Materials Science Materials in Electronics, vol. 11, pp. 1-5.
[47]M. Bazilian, et al. 2001, “Simplified Numerical Modelling and Simulation of a Photovoltaic Heat Recovery System, ”17th European Photovoltaic Solar Energy Conference, Munich, Germany, pp. 2387–2390.
[48]I. Novotny, et al. 1995, “Piezoelectric ZnO thin films prepared by cyclic sputtering and etching technology, ”20th International Conference on Microelectronics, vol. 1, pp. 65-68.
[49]T. Miyata, et al. 2000, “High sensitivity chlorine gas sensors using multicomponent transparent conducting oxide thin films, ”Sensors and Actuators B: Chemical, vol. 69, pp. 16-21.
[50]Q. Wang, et al. 2005, “Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO, ”Applied Physics Letters, vol. 87, pp. 162509-162511.
[51]U. N. Maiti, et al. 2007, “Effect of Mn doping on the optical and structural properties of ZnO nano/micro-fibrous thin film synthesized by sol gel technique, ”Physica B, vol. 387, pp. 103-108.
[52]H. J. Fan, et al. 2007, “ZnO nanowires and nanobelts:Shape selection and hermodynamic modeling, ”Applied Physics Letters, vol. 90, pp. 143316-143318.
[53]C. Xu, et al. 2007, “Structural characterization and low temperature growth of ferromagnetic Bi–Cu codoped ZnO bicrystal nanowires, ”Applied Physics Letters, vol. 91, pp. 153104-153106.
[54]P. Sharma, et al. 2003, “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO, ”Nature Materials, vol. 2, pp. 673-677.
[55]S. Ramachandran, et al. 2004, “Zn0.9Co0.1O-based diluted magnetic semiconducting thin films, ”Applied Physics Letters, vol. 84, pp. 5255-5257.
[56]C. K. Xu, et al. 2005, “Low-temperature ( ~250 °C) route to lateral growth of ZnO nanowires, ”Applied Physics Letters, vol. 87, pp. 253104-253106.
[57]T. S. Herng, et al. 2006, “Origin of room temperature ferromagnetism in ZnO:Cu films, ”Journal of Applied Physics, vol. 99, pp. 086101-086103.
[58]W. K. Hong, et al. 2008, “Tunable Electronic Transport Characteristics of Surface-Architecture-Controlled ZnO Nanowire Field Effect Transistors, ”Nano Letters, vol. 8, pp. 950-956.
[59]H. E. Unalan, et al. 2008, “Rapid synthesis of aligned zinc oxide nanowires, ”Nanotechnology, vol. 19, pp. 255608-255612.
[60]B. Lo, et al. 2006, “Seed-mediated fabrication of ZnO nanorods with controllable morphology and photoluminescence properties, ”Scripta Materialia, vol. 54, pp. 411-415.
[61]S.S. Park, et al. 2008, “ZnO nanotips and nanorods on carbon nanotube/Si substrates: anomalous p-type like optical properties of undoped ZnO nanotips, ”Nanotechnology, vol. 19, pp. 245708-245712.
[62]G. M. Li, et al. 2008, “Synthesis and field emission properties of ZnCdO hollow micro–nano spheres, ”Physica E, vol. 40, pp. 2649-2653.
[63]J. Xiao, et al. 2008, “Field emission from zinc oxide nanotowers: the role of the top morphology, ”Nanotechnology, vol. 19, pp. 295706-295711.
[64]Y. G. Wang, et al. 2008, “Mass production of ZnO nanotetrapods by a flowing gas phase reaction method, ”Nanotechnology, vol. 19, pp. 245610-245615.
[65]C. S. Lao, et al. 2006, “Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface, ”Chemical Physics Letters, vol. 417, pp. 358-362.
[66]F. Z. Wang, et al. 2005, “Raman scattering and photoluminescence of quasi-aligned ternary ZnCdO nanorods, ”Journal of Physics D, vol. 38, pp. 2919-2922.
[67]Q. Wan, et al. 2004, “Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires, ”Applied Physics Letters, vol. 84, pp. 3085-3087.
[68]Z. Zhu, et al. 2005, “Zinc Oxide Nanowires Grown by Vapor-Phase Transport Using Selected Metal Catalysts: A Comparative Study, ”Journal of Materials Chemistry, vol. 17, pp. 4227-4234.
[69]X. C. Wang, et al. 2005, “Synthesis and characterization of well-aligned Cd-Al codoped ZnO nanorod arrays, ”Chemical Physics Letters, vol. 469, pp. 308-312.
[70]陳介山,2006,“軟電技術與檢測標準高峰論壇”,經濟部標準檢驗局,工研院量測技術發展中心,11月。
[71]H. Fabricius, et al. 1986, “Ultraviolet detectorsin thin sputtered ZnO films, ”Journal of Applied Optics, vol. 25, pp. 2764-2767.
[72]S. Liang, et al. 2001, “ZnO schottky ultraviolet photodetectors, ”Journal of Crystal Growth, vol. 225, pp. 110-113.
[73]S. H. Kim, et al. 2005, “Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO, ”Applied Physics Letters, vol. 86, pp. 112101-112103.
[74]U. Grossner, et al. 2004, “Palladium Schottky barrier contacts to hydrothermally grown n-ZnO and shallow electron states,”Applied Physics Letters, vol 85, pp. 2259-2261.
[75]K. Ip, et al. 2004, “Temperature-dependent characteristics of Pt Schottky contacts on n-type ZnO,”Applied Physics Letters, vol. 84, pp. 2835-2837.
[76]高暉,2005,“ZnO肖特基勢壘紫外探測器”,發光學報,26卷,1期,頁135-138。
[77]H. Y. Xu, et al. 2005, “Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes, ”Applied Physics B, vol. 80, pp. 871-874.
[78]J. B. K. Law, et al. 2006, “Admittance of CdS nanowires embedded in porous alumina template, ”Applied Physics Letters, vol. 88, pp. 113114-113116.
[79]C. Soci, et al. 2007, “ZnO Nanowire UV Photodetectors with High Internal Gain, ”Nano Letters, vol. 7, pp. 1003-1009.
[80]V. John, 2003, “Twists and Turns in the Development of the Transistor, ”IEEE-USA Today''s Engineer, May.
[81]W. John, 2003, “Create World''s First Transparent Transistor, ”College of Engineering, Oregon State University, Corvallis, OR: OSU News & Communication, July.
[82]R. L. Hoffman, et al. 2003, “ZnO-based transparent thin-film transistors, ”Applied Physics Letters, vol. 82, pp. 733-735.
[83]P. F. Carcia, et al. 2003, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering, ”Applied Physics Letters, vol. 82, pp. 1117-1119.
[84]J. Nishii, et al. 2003, “High mobility thin film transistors with transparent ZnO channels, ”Japanese Journal of Applied Physics, vol. 42, pp. L347-L349.
[85]S. Masuda, et al. 2003, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties, ”Journal of Applied Physics, vol. 93, pp. 1624-1630.
[86]C. C. Liu, et al. 2009, “Transparent ZnO Thin-Film Transistors on Glass and Plastic Substrates Using Post-Sputtering Oxygen Passivation, ”Journal of Display Technology, vol. 5, pp. 192-197.
[87]B. J. Norris, et al. 2003, “Spin-coated zinc oxide transparent transistors, ”Journal of Physics D: Applied Physics, vol. 36, pp. L105-L107.
[88]Y. Kwon, et al. 2004, “Enhancement-mode thin-film field-effect transistor using phosphorus doped (Zn,Mg)O channel, ”Applied Physics Letters, vol. 84, pp. 2685-2687.
[89]N. L. Dehuff, et al. 2005, “Transparent thin-film transistors with zinc indium oxide channel layer, ”Journal of Applied Physics, vol. 97, pp. 064505-064505-5.
[90]H. Q. Chiang, et al. 2005, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, ”Applied Physics Letters, vol. 86, pp. 013503-013503-2.
[91]G. F. Boesen, et al. 1968, “ZnO Field-Effect Transistor, ”Proceeding Letters, IEEE, pp. 2094-2095.
[92]Z. L. Wang, 2004, “Nanostructures of zinc oxide , ”Materials Today, vol. 7, pp. 26-33
[93]X. Y. Kong, et al. 2004, “Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts, ”Science, vol. 303, pp. 1348-1351.
[94]P. Zu, et al. 1997, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, ”Solid State Communications, vol. 103, pp. 459-463.
[95]Z. K. Tang, et al. 1998, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, ”Applied Physics Letters, vol. 72, pp. 3270-3272.
[96]L. Vayssieres, et al. 2001, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, ”Chemistry of Materials, vol. 13, pp. 4395-4398.
[97]Z. P. Zhang, et al. 2005, “Near-Room-Temperature Production of Diameter-Tunable ZnO Nanorod Arrays through Natural Oxidation of Zinc Metal, ”Chemistry-A European Journal, vol. 11, pp. 3149-3154.
[98]J. Zhao, et al. 2006, “Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method, ”Journal of the European Ceramic Society, vol. 26 pp. 2769-2775.
[99]L. C. Campos, et al. 2007, “Determination of the epitaxial growth of zinc oxide nanowires on sapphire by grazing incidence synchrotron x-ray diffraction, ”Applied Physics Letters, vol. 90, pp. 181929-1-181929-3.
[100]C. H. Liu, et al. 2003, “High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays, ”Advanced Materials, vol. 15, pp. 838-841.
[101]Z. Wang, et al. 2002, “Highly ordered zinc ox,ide nanotubules synthesized within the anodic aluminum oxide template, ”Applied Physics A, vol. 74, pp. 201-203.
[102]L. Spanhel, et al. 1991, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, ”Journal of the American Chemical Society, vol. 113, pp. 2826-2833.
[103]L. Vayssieres, et al. 2001, “ Purpose-Built Anisotropic Metal Oxide Material:  3D Highly Oriented Microrod Array of ZnO, ”Journal of Physical Chemistry B, vol. 105, pp. 3350-3352.
[104]Y. Li, et al. 2009, “Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method, ”Chemical Papers, vol. 63, pp. 698-703.
[105]C. Pacholski, et al. 2002, “Angewandte Chemie International Edition, vol. 41, pp. 1188-1191.
[106]B. Liu, et al. 2004, “Room Temperature Solution Synthesis of Monodispersed Single-Crystalline ZnO Nanorods and Derived Hierarchical Nanostructures, “Langmuir, vol. 20, pp. 4196-4204.
[107]Z. R. Tian, et al. 2002, “Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns, “Journal of the American Chemical Society, vol. 124, pp. 12954-12955.
[108]L. Vayssieres, 2003, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, “Advanced Materials, vol. 15, pp. 464-466.
[109]L. E. Greene, et al. 2003, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, “Angewandte Chemie International Edition, vol. 42, pp. 3031-3034
[110]Q. Li, et al. 2005, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions, “Chemistry of Materials, vol. 17, pp. 1001-1006.
[111]Y. Tak, et al. 2005, “Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, “Journal of Physical Chemistry B, vol. 109, pp. 19263-19269.
[112]S. Liang, et al. 2001, “ZnO Schottky ultraviolet photodetectors, ”Journal of Crystal Growth, vol. 225, pp. 110-113.
[113]H. S. Yang, et al. 2005, “Fabrication of hybrid n-ZnMgO/n-ZnO/p-AlGaN/p-GaN light-emitting diodes, ”Japanese Journal of Applied Physics, vol. 44, pp. 7296-7300.
[114]T. J. Hsueh, et al. 2007, “Crabwise ZnO Nanowire UV Photodetector Prepared on ZnO:Ga/Glass Template, ”IEEE Transactions On Nanotechnology, vol. 6, pp. 595-600.
[115]C. Y. Lu, et al. 2006, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates, ”Applied Physics Letters, vol. 89, pp. 153101-153103.
[116]Y. M. Chen, et al. 2007, “High Performance ZnO Thin Film Transistor Fabricated on Both Glass and Flexible Substrates, ”ECS Transactions, vol. 11, pp. 17-21.
[117]林筱文,2006,“國立台灣大學光電所所訊”,16期,12月。
[118]黃建璋,2008,“先進可撓式/玻璃基板氧化鋅薄膜電晶體製程及其電路與顯示器應用分析研究成果報告(精簡版)”,國立臺灣大學光電工程學研究所,行政院國家科學委員會專題研究計畫,8 月,計畫編號: NSC 96-2221-E-002-113-。
[119]林鵬,2007,“顯示器用氧化鋅薄膜電晶體研發研究成果報告(精簡版)”,國立交通大學材料科學與工程學系(所),行政院國家科學委員會專題研究計畫,7 月,計畫編號: NSC 95-2221-E-009-083-。
[120]林鵬,2006,“顯示器用氧化鋅薄膜電晶體研發(II)研究成果報告(精簡版)”,國立交通大學材料科學與工程學系(所),行政院國家科學委員會專題研究計畫,7 月,計畫編號: NSC 96-2221-E-009-103-。
[121]梁世宏,2007,“氧化鋅系列金絕半光檢測器與光激化學氣相沉積二氧化矽層金氧半場效電晶體之研製”,國立成功大學奈米科技暨微系統工程研究所碩士論文,6月。
[122]S. J. Young, et al. 2007,“ ZnO metal-semiconductor-metal ultraviolet photodetectors with Iridium contact electrodes, ”IEE Proceedings Optoelectronics, vol.1, pp.135-139.
[123]許嘉麟,2008,“氧化鋅奈米線電晶體元件之製作與分析”,國立成功大學化學工程學系碩博士論文,8月。
[124]C. L. Hsu, 2008, “Fabrication and Characterization of ZnO Nanowire Transistors: Vertically Aligned ZnO Nanowire Arrays, Multiple Channel Nanowire-based Transistors, ”December, ISBN: 3639114507.
[125]S. M. Sze, 2001, “Semiconductor devices physics and technology 2nd edition, ”September, ISBN-10: 0471333727.
[126]D. K. Schroder, 1998, “Semiconductor material and device charaterization, ”June, ISBN-10: 0471241393.
[127]F. A. Padovani, et al. 1966, “Filed and Thermionic-Feild Emission in Schottky Barriers, ”Solid-State Electron. vol. 9, pp. 695-707.
[128]Z. L. Wang, 2003, “Nanowires and Nanobelts: Materials, Properties and Devices, ” October, ISBN: 0387287051.
[129]E. H. Rhoderick, et al. 1988, “Metal-Semiconductor Contacts, 2nd ed., ”September, ISBN-10: 019859335X.
[130]A. Y. C. Yu, 1970, “Electron Tunneling and Contact Resistance of Metal-Silicon Contact Barriers, ”Solid-state Electronics, vol. 13, pp. 23-247.
[131]F. A. Padovani, et al. 1966, “Filed and Thermionic-Feild Emission in Schottky Barriers, ”Solid-State Electronics, vol. 9, pp. 695-707.
[132]K. C. Huang, et al. 2004, “Inductively Coupled Plasma Reactive Ion Etching-Induced GaN Defect Studied by Schottky Current Transport Analysis, ”Japanese Journal of Applied Physics, vol. 43, pp. 82-85.
[133]S.O. Kasap, 2001, “Optoelectronics and photonics principles and practices, ”February, ISBN-10: 0201610876.
[134]S. M. Sze, et al. 2006, “Physics of Semiconductor Devices, ”October, ISBN-10: 0471143235.
[135]R. W .Hoffman, et al. 1976, “in Physical of Nonmetallic Thin Films,”Plenum Press: New York, pp. 273.
[136]H. Xiao, 2000, “Introduction to Semiconductor Manufacturing Technology, ”December, ISBN-10: 0130224049.
[137]E. M. Levin, et al. 1964, “Phase diagrams for ceramists, ”American Ceramic Society, Columbus, ASIN: B0007EDW1I..
[138]L. K. Wang, et al. 2009, “MgZnO metal-semiconductor-metal structured solar-blind photodetector with fast response, ”Solid State Communications, vol. 149, pp. 2021-2023.
[139]X. J. Zhang, et al. 2005, “Structural and optical properties of MgxZn1-xO thin films deposited by magnetron sputtering, ”Physica B, vol. 364, pp. 157-161.
[140]X. Zhang, et al. 2005, “Structural and optical properties of Zn1-xMgO thin films deposited by ultrasonic spray pyrolysis, ”Thin Solid Films, vol. 492, pp. 248-252.
[141]M. H. Huang, et al. 2001, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, ”Advanced Materials, vol. 13, pp. 113-116.
[142]Y. Z. Jin, et al. 2008, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles, ”Nano Letters, vol. 8, pp. 1649-1653.
[143]W. I. Park, et al. 2009, “Ultrafine ZnO Nanowire Electronic Device Arrays Fabricated by Selective Metal–Organic Chemical Vapor Deposition, ”Small, vol. 5, pp. 181-184.
[144]K. Keem, et al. 2006, “Fabrication and Device Characterization of Omega-Shaped-Gate ZnO Nanowire Field-Effect Transistors, ”Nano Letters, vol. 6, pp. 1454-1458.
[145]Y. Zhang, et al. 2009, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices, ”Nanotechnology, vol. 20, pp. 155707-155712.
[146]W. Water, et al. 2009, “Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires, ”Materials Science and Engineering B, vol. 158, pp. 75-78.
[147]Z. L. Wang, 2009, “ZnO nanowire and nanobelt platform for nanotechnology, ”Materials Science and Engineering: R: Reports, vol. 64, pp. 33-71.
[148]T. H. Fang, et al. 2009, “Photoluminescence characteristics of ZnO doped with Eu3+ powders, ”Journal of Physics and Chemistry of Solids, vol. 70, pp. 1015-1018.
[149]M. Razeghi, et al. 1996, “Semiconductor ultraviolet detectors, ”Journal of Applied Physics, vol. 79, pp. 7433-7475.
[150]C. A. Arguello, et al. 1969, “First-order raman effect in wurtzite-type crystals, ”Physical Review, vol. 181, pp. 1351-1363.
[151]M. Rajalaxmi, et al. 2000, “Optical phonon confinement in zinc oxide nanoparticles, ”Journal of Applied Physics, vol. 87, pp. 2445-2448.
[152]M. Tzolov, et al. 2000, “Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering, ”Thin Solid Films, vol. 379, pp. 28-36.
[153]Y. Ryu, et al. 2006, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes, ”Applied Physics Letters, vol. 88, pp. 241108-241110.
[154]M. H. Huang, et al. 2001, “Room-Temperature Ultraviolet Nanowire Nanolasers, ”Science, vol. 292, pp. 1897-1899.
[155]H. Zhou, et al. 2011, “Effects of thermal annealing on the performance of Al/ZnO nanorods/Pt structure ultraviolet photodetector, ”Materials Science and Engineering B, vol. 176, pp. 740-744.
[156]L. W. Ji, et al. 2010, “Structural and Optoelectronic Characteristics of Well-Aligned ZnO Nanorod Arrays for Photodiodes, ”Journal of Nanoelectronics and Optoelectronics, vol. 5, pp. 295-299.
[157]C. A. Arguello, et al. 1969, “First-order raman effect in wurtzite-type crystals, ”Physical Review, vol. 181, pp. 1351-1363.
[158]M. Rajalaxmi, et al. 2000, “Optical Phonon Confinement in Zinc Oxide Nanoparticles, ”Journal of Applied Physics, vol. 87, pp. 2445-2448.
[159]M. Tzolov, et al. 2000, “Vibration properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering, ”Thin Solid Films, vol. 379, pp. 28-36.
[160]D. M. Bagnall, et al. 1998, “High temperature excitonic stimulated emission from ZnO epitaxial layers, ”Applied Physics Letters, vol. 73, pp. 1038-1040.
[161]M. Wraback, et al. 1999, “High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire, ”Applied Physics Letters, vol. 74, pp. 507-509.
[162]D. Basak, et al. 2003, “Photoconductive UV detectors on sol–gel-synthesized ZnO films, ”Journal of Crystal Growth, vol. 256, pp. 73-77.
[163]G. E. Jellison, et al. 1998, “Optical functions of uniaxial ZnO determined by generalized ellipsometry, ”Physical Review B, vol. 58, pp. 3586-3589.
[164]M. Rebien, et al. 2002, “Optical properties of ZnO thin films: Ion layer gas reaction compared to sputter deposition, ”Applied Physics Letters, vol. 80, pp. 3518-3520.
[165]D. G. Thomas, 1960, “The exciton spectrum of zinc oxide, ”Journal of Physics and Chemistry of Solids, vol. 15, pp. 86-96.
[166]M. Bender, et al. 2002, “Production and characterization of zinc oxide thin films for room temperature ozone sensing, ”Thin Solid Films, vol. 418, pp. 45-50.
[167]J. Androulakis, et al. 2005, “Indium oxide as a possible tunnel barrier in spintronic devices, ”Thin Solid Films, vol. 471, pp. 293-297.
[168]H. Hosono, et al. 2002, “Frontier of transparent conductive oxide thin films, ”Vacuum, vol. 66, pp. 419-425.
[169]S. J. Young, et al. 2006, “ZnO metal–semiconductor–metal ultraviolet sensors with various contact electrodes, ”Journal of Crystal Growth, vol. 293, pp. 43-47.
[170]S. J. Young, et al. 2008, “ZnO Schottky diodes with iridium contact electrodes, ”Semiconductor Science and Technology, vol. 23, pp. 085016-085019.
[171]M. Suchea, et al. 2005, “Nanostructured ZnO and ZAO transparent thin films by sputtering-surface characterization, ”Reviews on Advanced Materials Science, vol. 10, pp. 335-340.
[172]S. Liang, et al. 1998, “Epitaxial growth of ( 11[`2]01120) ZnO on ( 01[`1]20112) Al2O3 by metalorganic chemical vapor deposition, ”Journal of Electronic Materials, vol. 27, pp. L72-L76.
[173] S. Logothetidis, 2005, “Polymeric substrates and encapsulation for flexible electronics: Bonding structure, surface modification and functional nanolayer growth, ”Reviews on Advanced Materials Science, vol. 10, pp. 387-397.
[174]A. Laskarakis, et al. 2006, “On the optical anisotropy of poly(ethylene terephthalate) and poly(ethylene naphthalate) polymeric films by spectroscopic ellipsometry from visible-far ultraviolet to infrared spectral regions, ”Journal of Applied Physics, vol. 99, pp. 066101-066103.
[175]S. J. Young, et al. 2006, “Characterization of ZnO metal–semiconductor–metal ultraviolet photodiodes with palladium contact electrodes, ”Semiconductor Science and Technology, vol. 21, pp. 1507-1511.
[176]S. J. Young, et al. 2007, “ZnO metal–semiconductor–metal ultraviolet photodetectors with Iridium contact electrodes, ”IET Optoelectronics, vol. 1, pp. 135-139.
[177]T. K. Lin, et al. 2005, “ZnO MSM photodetectors with Ru contact electrodes, ”Journal of Crystal Growth, vol. 281, pp. 513-517.
[178]S. J. Young, et al. 2007, “ZnO Metal-Semiconductor-Metal Ultraviolet Photodiodes with Au Contacts, ”Journal of The Electrochemical Society, vol. 154, pp. H26-H29.
[179]H. J. Ko, et al. 2002, “Investigation of ZnO epilayers grown under various Zn/O ratios by plasma-assisted molecular-beam epitaxy, ”Applied Physics Letters, vol. 92, pp. 4354-4360.
[180]Y. Nakanishi, et al. 1999, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation, ”Applied Surface Science, vol. 142, pp. 233-236.
[181]J. H. Choi, et al. 2001, “Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition, ”Journal of Crystal Growth, vol. 226, pp. 493-500.
[182]A. Nahhas, et al. 2001, “Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer, ”Applied Physics Letters, vol. 78, pp. 1511-1513.
[183]L. W. Ji, et al. 2003, “InGaN quantum dot photodetectors, ”Solid-State Electronics, vol. 47, pp. 1753-1756.
[184]L. W. Ji, et al. 2006, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes, ”Physics Letters A, vol. 355, pp. 118-121.
[185]D. H. Zhang, et al. 1994, “Effects of annealing ZnO films prepared by ion-beam-assisted reactive deposition, ”Thin Solid Films, vol. 238, pp. 95-100.
[186]Y. Takahashi, et al. 1994, “Photoconductivity of Ultrathin Zinc Oxide Films, ”Journal of Applied Physics, vol. 33, pp. 6611-6615.
[187]S. A. Studenikin, et al. 2000, “Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films, ”Journal of Applied Physics, vol. 87, pp. 2413-2421.
[188]P. Sharma, et al. 2002, “Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering, ”Applied Physics Letters, vol. 80, pp. 553-555.
[189]H. Sheng, et al. 2002, “Nonalloyed Al Ohmic Contacts to MgxZnl-xO, ”Journal of Electronic Materials, vol. 31, pp. 811-814.
[190]H. Sheng, et al. 2005, “Al Ohmic Contacts to HCl-treated MgxZn1-xO, ”Journal of Electronic Materials, vol. 34, pp. 754-757.
[191]J. H. Kim, et al. 2008, “Balloon embolectomy of a cylindrical dissected plaque that complicated performing superficial femoral artery angioplasty, ”Korean Circulation Journal, vol. 53, pp. 335-338.
[192]S. H. Kim, et al. 2005, “Zn/Au ohmic contacts on n-type ZnO epitaxial layers for light-emitting devices, ”Electrochemical and Solid-State Letters, vol. 8, pp. G198-G200.
[193]D. K. Hwang, et al. 2007, “ZnO thin films and light-emitting diodes, ”Journal of Physics D, vol. 40, pp. R387-R412.
[194]R. Khanna, et al. 2010, “Ti/Au Ohmic contacts to indium zinc oxide thin films on paper substrates, ”Journal of Vacuum Science & Technology B, vol. 28, pp. L43-L46.
[195]J. J. Chen, et al. 2006, “Low specific contact resistance Ti/Au contacts on ZnO, ”Applied Physics Letters, vol. 88, pp. 122107-122109.
[196]R. E. Hummel, 1993, “Electronic Properties of Materials 2nd ed., ”(Springer, Berlin,) , p. 373.
[197]R. H. Yuang, et al. 1996, “High‐speed GaAs metal‐semiconductor‐metal photodetectors with recessed metal electrodes, ”Applied Physics Letters, vol. 69, pp. 245-247.
[198]X. G. Zheng, et al. 2007, “Ultraviolet photoconductive detector based on Al doped ... "Photoconductive properties of ZnO thin films grown by pulsed laser deposition, ”Journal of Luminescence, vol. 122-123, pp. 198-201.
[199]T. Andelman, et al. 2007, “Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines, ”Journal of Nanomaterials, vol. 2007, pp. 73824-73827.
[200]Z. Xu, et al. 2005, “Photoconductive UV Detectors Based on ZnO Films Prepared by Sol-Gel Method, ”Journal of Sol-Gel Science and Technology, vol. 36, pp. 223-226.
[201]E. E. Reuter, et al. 1994, “Photo injected carrier distributions in metal semiconductor metal photodetectors imaged by photoluminescence microscopy, ”IEEE Photonics Technology Letters, vol. 6, pp. 966-970.
[202]L. K. Wang, et al. 2009, “MgZnO metal-semiconductor-metal structured solar-blind photodetector with fast response, ”Solid State Communications, vol. 149, pp. 2021-2023.
[203]L. W. Ji, et al. 2010, “Characteristic Improvements of ZnO Based Metal Semiconductor Metal Photodetector on Flexible Substrate with ZnO Cap Layer, ”Japanese Journal of Applied Physics, vol. 49, pp. 052201-052203.
[204]L. W. Ji, et al. 2008, “MOVPE-Grown Ultrasmall Self-Organized InGaN Nanotips, ”IEEE Transactions on Nanotechnology, vol. 7, pp. 1-4.
[205]C. N. R. Rao, et al. 2003, “Inorganic Nanowires, ”Progress in Solid State Chemistry, vol. 31, pp. 5-147.
[206]H. Gao, et al. 2007, “Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method, ”Journal of Physics D, vol. 40, pp. 3654-3659.
[207]V. M. Markushev, et al. 2008, “ZnO lasing in complex systems with tetrapods, ”Applied Physics B, vol. 93, pp. 231-238.
[208]C. S. Lao, et al. 2007, “Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization, ”Journal of the American Chemical Society, vol. 129, pp. 12096-12097.
[209]C. C. Lin, et al. 2009, “Synthesis of ZnO Nanowires and Their Applications as an Ultraviolet Photodetector, ”Journal of Nanoscience and Nanotechnology, vol. 9, pp. 2813-2819.
[210]K. Liu, et al. 2010, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles, ”Nano Letters, vol. 114, pp. 19835-19839.
[211]W. I. Park, et al. 2009, “Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition, ”Small, vol. 5, pp. 181-184.
[212]K. Keem, et al. 2006, “Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors, ”Nano Letters, vol. 6, pp. 1454-458.
[213]Y. Zhang, et al. 2006, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices, ”Nanotechnology, vol. 20, pp. 155707-155712.
[214]W. Water, et al. 2009, “Effect of Growth Temperature on Photoluminescence and Piezoelectric Characteristics of ZnO NWs, ”Materials Science and Engineering B, vol. 158, pp. 75-78.
[215]Z. L. Wang, 2009, “ZnO nanowire and nanobelt platform for nanotechnology, ”Materials Science and Engineering R, vol. 64, pp. 33-71.
[216]T. H. Fang, et al. 2009, “Photoluminescence characteristics of Eu-doped ZnO powders, ”Journal of Physics and Chemistry of Solids, vol. 70, pp. 1015-1018.
[217]M. Razeghi, et al. 1996, “Semiconductor ultraviolet detectors, ”Journal of Applied Physics, vol. 79, pp. 7433-7473.
[218]Y. Liu, et al. 2000, “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, ”Journal of Electronic Materials, vol. 29, pp. 69-74.
[219]C. J. Lee, et al. 2002, “Field emission from well-aligned zinc oxide nanowires grown at low temperature, ”Applied Physics Letters, vol. 81, pp. 3648-3650.
[220]T. H. Fang, et al. 2009, “Surface and physical characteristics of ZnO:Al nanostructured films, ”Journal of Applied Physics, vol. 105, pp. 113512(1-8).
[221]H. Kato, et al. 2003, “Homoepitaxial Growth of High-Quality Zn-Polar ZnO Films by Plasma-Assisted Molecular Beam Epitaxy, ”Japanese Journal of Applied Physics, vol. 42, pp. L1002-L1005.
[222]L. W. Ji, et al. 2007, “Buckling characterization of vertical ZnO nanowires using nanoindentation, ”Applied Physics Letters, vol. 90, pp. 033109(1-3).
[223]I. K. Park, et al. 2008, “Effect of InGaN quantum dot size on the recombination process in light-emitting diodes, ”Applied Physics Letters, vol. 92, pp. 253105(1-3).
[224]L. W. Ji, et al. 2008, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes, ”Physics Letters A, vol. 355, pp. 118-121.
[225]L. Yingying, et al. 2009, “Facile fabrication of UV photodetectors based on ZnO nanorod networks across trenched electrodes, ”Journal of Semiconductors, vol. 30, pp. 063004(1-7).
[226]N. N. Jandowa, et al. 2010, “The electrical properties of ZnO MSM Photodetector with Pt Contact Electrodes on PPC Plastic, ”Journal of Electron Devices, vol. 7, pp. 225-229.
[227]O. Lupan, et al. 2008, “Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in-situ lift-out technique, ”Physica Status Solidi A, vol. 205, pp. 2673-2678.
[228]C. Adelmann, et al. 2000, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy, ”Applied Physics Letters, vol. 76, pp. 1570-1572.
[229]U. Özgür, et al. 2010, “ZnO Devices and Applications: A Review of Current Status and Future Prospects, ”Proceedings of the IEEE, vol. 98, pp. 1255-1268.
[230]X. Ma, et al. 2009, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si, ”Optics Express, vol. 17, pp. 14426-14433.
[231]Y. K. Su, et al. 2010, “Ultraviolet ZnO nanorod photosensors, ”Langmuir, vol. 26, pp. 603-606.
[232]S. M. Peng, et al. 2010, “ZnO Nanobridge Array UV Photodetectors, ”Journal of Physical Chemistry C, vol. 114, pp. 3204-3208.
[233]P. J. Li, et al. 2009, “Electrical and Photoresponse Properties of an Intramolecular p-n Homojunction in Single Phosphorus-Doped ZnO Nanowires, ”Nano Letters, vol. 9, pp. 2513-2518.
[234]H. T. Ng, et al. 2004, “Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor, ”Nano Letters, vol. 4, pp. 1247-1252.
[235]K. Keem, et al. 2006, “Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors, ”Nano Letters, vol. 6, pp. 1454-1458.
[236]J. B. Baxter, et al. 2005, “Nanowire-based dye-sensitized solar cells, ”Applied Physics Letters, vol. 86, pp. 053114(1-3).
[237]X. D. Wang, et al. 2007, “Direct-Current Nanogenerator Driven by Ultrasonic Waves, ”Science, vol. 316, pp. 102-105.
[238]Q. Wan, et al. 2004, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, ”Applied Physics Letters, vol. 84, pp. 3654-3656.
[239]F. Fang, et al. 2009, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method, ”Nanotechnology, vol. 20, pp. 245502-245508.
[240]Y. Y. Li, et al. 2009, “Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet, ”Physica B, vol. 404, pp. 4282-4285.
[241]G. Chai, et al. 2009, “Crossed zinc oxide nanorods for ultraviolet radiation detection, ”Sensors Actuators A, vol. 150, pp. 184-187.
[242]S. Logothetidis, 2008, “Optical and structural properties of ZnO for transparent electronics, ”Thin Solid Films, vol. 516, pp. 1345-1349.
[243]M. Garganourakis, et al. 2009, “Deposition and characterization of PEDOT/ZnO layers onto PET substrates, ”Thin Solid Films, vol. 517, pp. 6409-6413.
[244]H. Kato, et al. 2003, “Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam epitaxy, ”Japanese Journal of Applied Physics, vol. 42, pp. 2241-2244.
[245]L. W. Ji, et al. 2003, “Effects of strain on the characteristics of InGaN–GaN multiple quantum-dot blue light emitting diodes, ”Physics Letters A, vol. 355, pp. 118-121.
[246]Y. Wu, et al. 2010, “Enhanced Photoresponse of Inkjet-Printed ZnO Thin Films Capped with CdS Nanoparticles, ”Journal of Physical Chemistry Letters, vol. 1, pp. 89-92.
[247]L. W. Ji, et al. 2004, “Growth of ultra small self-assembled InGaN nanotips, ”Journal of Crystal Growth, vol. 263, pp. 63-67.
[248]D. C. Kim, et al. 2009, “Selective crystalline seed layer assisted growth of vertically aligned mgzno nanowires and their high-brightness field-emission behavior, ”Crystal Growth and Design, vol. 9, pp. 4308-4314.
[249]H. S. Yang, et al. 2005, “Ti/Au n-type Ohmic contacts to bulk ZnO substrates, ”Applied Physics Letters, vol. 87, pp. 212106-212108.
[250]A. Ohtomo, et al. 1998, “MgxZn1-xO as a II–VI widegap semiconductor alloy, ”Applied Physics Letters, vol. 72, pp. 2466-2468.
[251]S. Ju, et al. 2005, “Low Operating Voltage Single ZnO Nanowire Field-Effect Transistors Enabled by Self-Assembled Organic Gate Nanodielectrics, ”Nano Letters, vol. 5, pp. 2281–2286.
[252]J. B. Shim, et al. 2011, “Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers, ”Journal of Nanomaterials, vol. 2011, Article ID 582764, (1-6).
[253]Q. Ahsanulhaq, et al. 2009, “A templateless surfactant-free seedless aqueous route to single-crystalline ZnO nanowires synthesis. Ahsanulhaq, ”Journal of Physics and Chemistry of Solids, vol. 70, pp. 627-631.
[254]J. Xiao, et al. 2008, “Field emission from zinc oxide nanotowers: the role of the top morphology, ”Nanotechnology, vol. 19, pp. 295706-295711.
[255]Y. G. Wang, et al. 2008, “Mass production of ZnO nanotetrapods by a flowing gas phase reaction method, ”Nanotechnology, vol. 19, pp. 245610-245615.
[256]L. W. Ji, et al. 2009, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays, ”Applied Physics Letters, vol. 94, pp. 203106-203108.
[257]C. H. Chen, et al. 2009, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction, ”Chemical Physics Letters, vol. 476, pp. 69-72.
[258]H. J. Fan, et al. 2006, “Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications, ”Small, vol. 2, pp. 561-568.
[259]H. Zhou, et al. 2011, “Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect, ”Nanoscale Research Letters, vol. 6, pp. 147(1-6).
[260]H. Sheng, et al. 2002, “Nonalloyed Al ohmic contacts to MgxZn1-xO, ”Journal of Electronic Materials, vol. 31, pp. 811-814.
[261]C. Z. Wu, et al. 2011, “Ultraviolet photodetectors based on MgZnO thin films, ”Journal of Vacuum Science & Technology A, vol. 29, pp. 03A118(1-6).
[262]J. B. K. Law, et al. 2006, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time, ”Applied Physics Letters, vol. 88, pp. 133114-133116.
[263]N. H. Liu, et al. 2010, “Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction, ”ACS Applied Materials & Interfaces, vol. 2, pp. 1973-1979.
[264]V. Sukhovatkin, et al. 2009, “Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation, ”Science, vol. 324, pp. 1542-1544.
[265]Y. Ohya, et al. 2001, “Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition, ”Japanese Journal of Applied Physics, vol. 40, pp. 297-298.
[266]K. Nomura, et al. 2004, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, ”Nature, vol. 432, pp. 488-492.
[267]R. E. I. Schropp, et al. 2002, “New challenges in thin film transistor (TFT) research, ”Journal of Non-Crystalline Solids, vol. 299-302, pp. 1304-1310.
[268]H. C. Pan, et al. 2005, “Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films, ”Journal of Vacuum Science & Technology A, vol. 23, pp.1187-1191.
[269]C. Koidis, 2009, “Thin film and interface properties during ZnO deposition onto high-barrier hybrid/PET flexible substrates, ”Micron, vol. 40, pp. 130-134.
[270]A. Laskarakis, et al. 2010, “Real-time optical modelling and investigation of inorganic nano-layer growth onto flexible polymeric substrates, ”Materials Science and Engineering: B, vol. 166, pp. 7-13.
[271] E. M. C. Fortunato, et al. 2004, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature, ”Applied Physics Letters, vol. 85, pp. 2541-2543.
[272] E. M. C. Fortunato, et al. 2008, “High mobility indium free amorphous oxide thin film transistors, ”Applied Physics Letters, vol. 92, pp. 222103-222105.
[273]L. W. Ji, et al. 2010, “Preparation and Characteristics of Flexible Nanorod-Based Photodetectors, ”Journal of Nanoelectronics and Optoelectronics, vol. 5, pp. 300-303.
[274]J. H. Jun, et al. 2009, “Flexible TFTs based on solution-processed ZnO nanoparticles, ”Nanotechnology, vol. 20, pp. 505201-505206.
[275]R. A. Street, 2009, “Thin-Film Transistors, ”Advanced Materials, vol. 21, pp. 2007-2022.
[276]K. L. Fong, et al. 1999, “Monolithic RF active mixer design, ”IEEE Transactions on Circuits and Systems II, vol. 46, pp. 231-239.
[277]Y. Yamada, et al. 1995, “Application of planar lightwave circuit platform to hybrid integrated optical WDM transmitterheceiver module, ”Electronics Letters, vol. 31 pp.1366-1367.
[278]Y. Akahori, et al. 1994, “11 GHz ultrawide-bandwidth monolithic photoreceiver using InGaAs pin PD and InAIAs/lnGaAs HEMTs, ”Electronics Letters, vol. 30 pp. 267-268.
[279]曹亮吉,2002,“數學知識”,科學月刊,第十六卷,第八期,2月。
[280]I. Poupyrev, 2004 “Gummi: A bendable computer, ”Senior Research Scientist, Walt Disney Research, Pittsburgh, USA.
[281]R. Vertegaal, et al. 2008, “Organic User Interfaces: Introduction to Special Issue, ”Communications of the ACM, vol. 51, pp. 26-30.
[282]C. Schwesig, et al. 2004, “Gummi: a bendable computer, ”Proceedings of CHI''2004 ACM, pp. 263-270.
[283]C. Schwesig, et al. 2003, “Gummi: user interface for deformable computers, ”Proceedings of CHI''2003 ACM, pp. 954-955.
[284]J. Kang, et al. 2007, “Electrical characteristics of ZnO nanowire-based field-effect transistors on flexible plastic substrates, ”Japanese Journal of Applied Physics, vol. 46, pp. 6227-6229.
[285]K. J. Lee, et al. 2005, “A Printable Form of Single-Crystalline Gallium Nitride for Flexible Optoelectronic Systems, ”Small, vol. 1, pp. 1164-1168.
[286]S. Timoshenko, et al. 1968, “Elements of Strength of Materials, ”Van Nostrand, NewYork, ASIN: B000G8PW6I.
[287]黃文宏,2010,“低溫成長非晶相Zn1-x-yAlxSnyO薄膜及物性之研究”,中山大學物理學系研究所,碩士論文,七月。
[288]U. O. zgur, et al. 2005, “A comprehensive review of ZnO materials and devices, ”Journal of Applied Physics, vol. 98, pp. 041301(1-103).
[289]B. Lin, et al. 2001, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions, ”Journal of The Electrochemical Society, vol. 148, pp. 110-113.
[290]鄭明哲,1991,“光通信”,全華科技圖書股份有限公司,台北,8月。
[291]J. C, Palais, 1998, “Fiber Optic Communications, ”chap 7、11, Prentice Hall, January.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top