跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣沅瑾
研究生(外文):Yuan-jing Jiang
論文名稱:以三維分離場量有限差分時域法分析多重金奈米柱結構之耦合效應與感測應用
論文名稱(外文):Analysis of Coupling Effects within Nano-Gold-Rod Structures for Sensing Applications Using Split-Field FDTD Method
指導教授:張宏鈞
口試委員:楊宗哲張世慧
口試日期:2018-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:108
中文關鍵詞:分離場形有限差分時域法電漿子電漿子耦合效應折射率感測器感測器靈敏度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今,有很多金奈米結構的電漿子效應的生物應用研究,因為金在生物體中有較佳的化學與物理穩定性。大部分的研究假設在光是垂直入射與結構交互作用下,本研究則討論在斜向入射下的交互作用金奈米結構的電漿子效應。我們利用一個波長介於0.8~2.0微米的高斯波包當作入射源來探討多重金奈米柱在操作波長1.2微米附近作為折射率感測器的靈敏度。我們藉由有限時域差分法來達成理論模擬,並得知局部表面電漿共振會存在於金奈米棒中,也計算在不同入射角度下的反射頻譜。我們嘗試在金奈米棒的垂直方向增加棒子的數量來比較其差異。此外,我們得知不僅入射角與方位角會影響反射頻譜,連金奈米柱之間互相的間距不同也會造成差異。本研究中我們利用資料傳輸介面協定(MPI)來連接多台電腦同時計算來增加程式計算模擬的效率。
The surface plasmons generated in gold nanostructures have been studied widely because of its chemical and physical stability in medical applications. Theoretical investigation of such generation has most often assumed that the excitation incident waves are shined normally onto the structure. In this thesis research, we consider the incident waves are shined in the oblique direction. We study the multi-goldnano-rod structures excited by Gaussian-pulse wave in the wavelength range from 0.8 µm to 2.0 µm to theoretically calculate the sensitivity near 1.2 µm of the nanorod structure working as a refractive-index sensor. The numerical simulation tool is based on a split-field finite-difference time-domain (FDTD) method. The electric fields existing in the gold-nano-rods resulting from the phenomenon of localized surface plasmon resonance (LSPR) and the effect on the reflection spectra of different incident angles in the obliquely incident situation are examined. Furthermore, the dependence of the reflection spectra on the number of x-direction gold-rods along the y-axis is investigated. The reflection spectra are found to depend on not only the incident and polarization angle, but the distance between the nano rods. We use the message passing interface (MPI) protocol to connect with several computers in order to improve the efficiency of computation.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Computational Electromagnetic . . . . . . . . . . . . . . . . . . . . . . .2
1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 The Split-Field FDTD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Courant Stability Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.3 Modeling of Dispersive Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.3.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 The Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 The Auxiliary Differential Equation (ADE) Method . . . . . . . . . . . . . . . . . . 14
2.4 Convolutional Perfectly Matched Layer (CPML) . . . . . . . . . . . . . . . . . . . . . 17
2.5 Parallelized Split Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Numerical Accuracy Validation for Simulating Periodic Structures with the Split Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 The 3D structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3 Analysis of Coupling Effects of Nano-Scale Metal Structures . . . . . . . . . . . . 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The Single-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 The Two-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 The Three-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.4.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 The Four-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.5.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 The Five-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.6.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 The Seven-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 The Sensitivity And Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
4.1 The Definition of the Sensitiviy and FOM . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.1 The performance of sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.2 The Performance of FOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
4.2 The Sensitivity and FOM of Single-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 The Sensitivity and FOM of Two-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 The Sensitivity and FOM of Three-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 The Sensitivity and FOM of Four-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 The Sensitivity and FOM of Five-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7 The Sensitivity and FOM of Seven-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Albani, M., and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446–450, 1974.
Anger, P., P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of SingleMolecule Fluorescence,” Phys. Rev. Lett., vol. 96, 113002, 2006.
Amendola, V., R. Pilot, M. Frasconi, O. M. Marag`o, and M. A. Iat`i, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter, vol. 29, 203002, 2017.
Austin, L. A., B. Kang, and M. A. El-Sayed, “Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review,” Nano Today., vol. 10, pp. 542–558, 2015.
Belkhir A., and F. I. Baida, “Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome,” Phys. Rev. E, vol. 77, 056701, 2008.
Byun, K. M., and S. J. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express, vol. 13, pp. 3737–3742, 2005.
Chamanzar M., Z. Xia, E. S. Hosseini, S. Yegnanarayanan and A. Adibi,“On-chip localized surface plasmon resonance (LSPR) sensing using hybrid plasmonicphotonic-fluidic structures,” in 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, CTh4L.3, 2012.
Carl P., Anthony G.,”Emulating noreciprocity with spatially dispersive metasurfacs excited at oblique incidence,”Phys. Rev. Lett., vol. 117, 077401, 2016
Chen, M.-Y., C.-H. Lai, and H.-C. Chang, “A general split-field finite-difference time-domain method based on auxiliary differential equations for simulating linear and nonlinear dispersive periodic structures,” unpublished.
Chen, W.-Y., and Lin C.-H., “A standing-wave interpretation of plasmon resonance excitation in split-ring resonators,” Opt. Express, vol. 18, pp. 14280–14292, 2010.
Chen, Y. T., and H. C. Chang, Dipole Nano-Antennas with Multi-Bent-Sections, in Proc. Optics & Photonics Taiwan, International Conference 2015 (OPTIC 2015), paper, 2015-FRI-P0101-P004, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., December, 2015.
Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys., vol. 1, pp. 566–613, 1900.
Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667–669, 1998.
Fisher, H., and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantenna,” Opt. Express, vol. 16, pp. 9144–9154, 2008.
Gedney, S. D., and U. Navsariwala, ”An unconditionally stable finite element timedomain solution of the vector wave equation,” IEEE Microwave Guided Wave Lett. , vol. 5, pp. 332–334, 1995.
Hamidi M., F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D: Appl. Phys., vol. 44, 2011, Art ID. 245101
Hatab, N. A. , C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett., vol. 10, no. 12, pp. 4952–4955, 2010.
Harms, P., R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propogat., vol. 42, pp.1317–1324, 1994.
Harms, P. H., J. A. Roden, J. G. Maloney, M. P. Kesler, E. J. Kuster, and S. D.
Gedney, “Numerical analysis of periodic structures using the split-field algorithm,”
Proc. 13th Ann. Review Progress Applied Computational Electromagn., Monterey,
CA, pp. 104–111, 1997.
Harrington, R. F., “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181–200, 1987.
Huang, C. -Y., and H.-C. Chang, 3-D FDTD Studies of Coupling Effects of Plasmonic Nanostructures for Sensing Applications. National Taiwan University, 2017.
J.N. Farahani, H.-J. Eisler, D.W. Pohl, M. Pavius, P. Flckiger, P. Gasser, B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnol., vol. 18, no. 12, 125506, 2007.
Karumuri, S., and A. K. Kalkan, “Hybrid plasmon damping chemical sensor,” IEEE Trans. Nanotechnology, pp. 790–795, 2011.
Kernighan, B. W., and D. M. Ritchie, The C programming Language, 2nd Edition. Prentice-Hall, 1988.
Liu, Q. H., “The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell’s equations,” Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 1, pp. 122–125, 1997.
Liu, N., L. Langguth, T. Weiss, J. Kstel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagentically induced transparency at Drude damping limit,” Nat. Mater., vol. 8, pp. 758–762, 2009.
Liu, Y. -C., Study of Multi-bent-Section Nano-Antenna Structures Using the Parallelized Finite-Difference Time-Domain Method. M. S. Thesis, Graduate Institute
of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, August 2016.
Lorentz, H. A., The Theory of Electrons: Teubner, 1906. vol. 1, pp. 122–125, 1997.
Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater., vol. 9, pp. 707–715, 2010.
Maier, S. A., Plasmonics: Fundamentals and Applications. Springer, New York, 2007.
Murphy, C. J., A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkllany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res., vol. 41, pp. 1721–1730, 2008.
Okoniewski, M., M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 121–123, 1997.
Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966–3969, 2000 .
Ren, J., O. P. Gandhi, L. R. Walker, J. Fraschilla, and C. R. Boerman, “Floquentbased FDTD analysis of two-dimensional phased array antennas,” IEEE Microwave Guided Wave Lett., vol. 4, pp. 109–112, 1994.
Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett., vol. 27, pp. 334–339, 2000.
Roden J. A., J. P. Skinner and S. L. Johns, “Shielding effectiveness of three dimensional gratings using the periodic FDTD technique and CPML absorbing boundary condition,” in IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics (IEEE, 2005), pp. 128–131.
Sep´ulveda, B., P. C. Angelom´eb, M.Lechugaa, and M. Liz-Marz´anb, “LSPR-based nanobiosensors,” Nano Today, vol. 4, pp. 244–251, 2009.
Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with mimultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science., vol. 305, pp. 788–792, 2004.
Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett., vol. 6, pp. 355–360, 2006.
Taflove, A., and S. C. Hagness, Computation Electromagnetics: The FiniteDifference Time-Domain Method. Norwood, MA: Artech House, 2005.
Tobing, L. Y. M., L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong. “Deep
subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep., vol. 3, 2437, 2013.
Van Labeke, D., D. Grard, B. Guizal, F. Baida, and L. Li, “An angle-independent frequency selective surface in the optical range,” Opts. Express, vol. 14, pp. 11945– 11951, 2006.
Vial A., D. A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B, vol. 71, 085416, 2005.
Weiland, T., “A discretization model for the solution of Maxwell’s equations for six-component field,” Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120, 1977.
Wu, P. C., W. T. Chen, K.-Y. Yang, Y.-W. Huang, Y.-H. Chen, H. L. Huang, W.-L. Hsu, H. P. Chiang, and D. P. Tsai, “Vertical split-ring resonator based nanoplamonic sensor,” Appl. Phys. Lett.,, vol. 105, 033105, 2014.
Yee, K., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302– 307, 1966.
Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett., vol. 10, pp. 1006–1011, 2010.
Zienkiewicz, O. C., and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507–510, 1965.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top