|
Albani, M., and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446–450, 1974. Anger, P., P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of SingleMolecule Fluorescence,” Phys. Rev. Lett., vol. 96, 113002, 2006. Amendola, V., R. Pilot, M. Frasconi, O. M. Marag`o, and M. A. Iat`i, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter, vol. 29, 203002, 2017. Austin, L. A., B. Kang, and M. A. El-Sayed, “Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review,” Nano Today., vol. 10, pp. 542–558, 2015. Belkhir A., and F. I. Baida, “Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome,” Phys. Rev. E, vol. 77, 056701, 2008. Byun, K. M., and S. J. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express, vol. 13, pp. 3737–3742, 2005. Chamanzar M., Z. Xia, E. S. Hosseini, S. Yegnanarayanan and A. Adibi,“On-chip localized surface plasmon resonance (LSPR) sensing using hybrid plasmonicphotonic-fluidic structures,” in 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, CTh4L.3, 2012. Carl P., Anthony G.,”Emulating noreciprocity with spatially dispersive metasurfacs excited at oblique incidence,”Phys. Rev. Lett., vol. 117, 077401, 2016 Chen, M.-Y., C.-H. Lai, and H.-C. Chang, “A general split-field finite-difference time-domain method based on auxiliary differential equations for simulating linear and nonlinear dispersive periodic structures,” unpublished. Chen, W.-Y., and Lin C.-H., “A standing-wave interpretation of plasmon resonance excitation in split-ring resonators,” Opt. Express, vol. 18, pp. 14280–14292, 2010. Chen, Y. T., and H. C. Chang, Dipole Nano-Antennas with Multi-Bent-Sections, in Proc. Optics & Photonics Taiwan, International Conference 2015 (OPTIC 2015), paper, 2015-FRI-P0101-P004, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., December, 2015. Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys., vol. 1, pp. 566–613, 1900. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667–669, 1998. Fisher, H., and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantenna,” Opt. Express, vol. 16, pp. 9144–9154, 2008. Gedney, S. D., and U. Navsariwala, ”An unconditionally stable finite element timedomain solution of the vector wave equation,” IEEE Microwave Guided Wave Lett. , vol. 5, pp. 332–334, 1995. Hamidi M., F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D: Appl. Phys., vol. 44, 2011, Art ID. 245101 Hatab, N. A. , C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett., vol. 10, no. 12, pp. 4952–4955, 2010. Harms, P., R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propogat., vol. 42, pp.1317–1324, 1994. Harms, P. H., J. A. Roden, J. G. Maloney, M. P. Kesler, E. J. Kuster, and S. D. Gedney, “Numerical analysis of periodic structures using the split-field algorithm,” Proc. 13th Ann. Review Progress Applied Computational Electromagn., Monterey, CA, pp. 104–111, 1997. Harrington, R. F., “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181–200, 1987. Huang, C. -Y., and H.-C. Chang, 3-D FDTD Studies of Coupling Effects of Plasmonic Nanostructures for Sensing Applications. National Taiwan University, 2017. J.N. Farahani, H.-J. Eisler, D.W. Pohl, M. Pavius, P. Flckiger, P. Gasser, B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnol., vol. 18, no. 12, 125506, 2007. Karumuri, S., and A. K. Kalkan, “Hybrid plasmon damping chemical sensor,” IEEE Trans. Nanotechnology, pp. 790–795, 2011. Kernighan, B. W., and D. M. Ritchie, The C programming Language, 2nd Edition. Prentice-Hall, 1988. Liu, Q. H., “The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell’s equations,” Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 1, pp. 122–125, 1997. Liu, N., L. Langguth, T. Weiss, J. Kstel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagentically induced transparency at Drude damping limit,” Nat. Mater., vol. 8, pp. 758–762, 2009. Liu, Y. -C., Study of Multi-bent-Section Nano-Antenna Structures Using the Parallelized Finite-Difference Time-Domain Method. M. S. Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, August 2016. Lorentz, H. A., The Theory of Electrons: Teubner, 1906. vol. 1, pp. 122–125, 1997. Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater., vol. 9, pp. 707–715, 2010. Maier, S. A., Plasmonics: Fundamentals and Applications. Springer, New York, 2007. Murphy, C. J., A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkllany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res., vol. 41, pp. 1721–1730, 2008. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 121–123, 1997. Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966–3969, 2000 . Ren, J., O. P. Gandhi, L. R. Walker, J. Fraschilla, and C. R. Boerman, “Floquentbased FDTD analysis of two-dimensional phased array antennas,” IEEE Microwave Guided Wave Lett., vol. 4, pp. 109–112, 1994. Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett., vol. 27, pp. 334–339, 2000. Roden J. A., J. P. Skinner and S. L. Johns, “Shielding effectiveness of three dimensional gratings using the periodic FDTD technique and CPML absorbing boundary condition,” in IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics (IEEE, 2005), pp. 128–131. Sep´ulveda, B., P. C. Angelom´eb, M.Lechugaa, and M. Liz-Marz´anb, “LSPR-based nanobiosensors,” Nano Today, vol. 4, pp. 244–251, 2009. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with mimultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science., vol. 305, pp. 788–792, 2004. Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett., vol. 6, pp. 355–360, 2006. Taflove, A., and S. C. Hagness, Computation Electromagnetics: The FiniteDifference Time-Domain Method. Norwood, MA: Artech House, 2005. Tobing, L. Y. M., L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong. “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep., vol. 3, 2437, 2013. Van Labeke, D., D. Grard, B. Guizal, F. Baida, and L. Li, “An angle-independent frequency selective surface in the optical range,” Opts. Express, vol. 14, pp. 11945– 11951, 2006. Vial A., D. A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B, vol. 71, 085416, 2005. Weiland, T., “A discretization model for the solution of Maxwell’s equations for six-component field,” Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120, 1977. Wu, P. C., W. T. Chen, K.-Y. Yang, Y.-W. Huang, Y.-H. Chen, H. L. Huang, W.-L. Hsu, H. P. Chiang, and D. P. Tsai, “Vertical split-ring resonator based nanoplamonic sensor,” Appl. Phys. Lett.,, vol. 105, 033105, 2014. Yee, K., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302– 307, 1966. Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett., vol. 10, pp. 1006–1011, 2010. Zienkiewicz, O. C., and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507–510, 1965.
|