跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴姵穎
研究生(外文):Pei-Ying Lai
論文名稱:利用FPGA實現鎖相迴路鎖頻演算法於超音波噴塗系統
論文名稱(外文):FPGA-Based Phase-Locked-Loop Frequency-Locking Algorithm for Ultrasonic Spray Coating System
指導教授:余祥華
指導教授(外文):Shiang-Hwua Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:FPGA超音波換能器鎖相迴路
外文關鍵詞:FPGAultrasonic transducerphase-locked-loop
相關次數:
  • 被引用被引用:1
  • 點閱點閱:545
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本論文將設計的鎖相迴路鎖頻演算法應用於超音波噴塗系統,為因應不同超音波換能器,在此所允許的驅動頻率為20至80千赫。換能器在共振與反共振點,電壓電流的相位差為零,利用數位鎖相迴路技術能保持與輸入訊號頻率及輸入相位一致的特性,來自動鎖頻。希望所規劃的演算法,可自動使超音波換能器驅動於共振頻率或反共振頻率,並抑制其它頻率的諧振。所設計的鎖頻與偵測演算法將利用可程式規劃邏輯陣列晶片(Field Programmable Gate Array,FPGA) 來實現。
A phase-locked-loop frequency-locking algorithm implemented on an FPGA is presented for an ultrasonic spray coating system. The algorithm generates a sine wave for driving the ultrasonic transducer and ensures the frequency of the sine wave to automatically follow the transducer resonance (or anti-resonance) frequency, thereby maximizing the conversion efficiency from electrical power to vibration power. By the observation, the transducer''s impedance becomes purely resistive at its resonance (or anti-resonance). So a digital phase locked loop is employed to track the transducer resonance (or anti-resonance) by adjusting the driving frequency to where the driving voltage and current are in phase. The targeted driving frequencies range from 20 kHz to 80 kHz. The experiments performed on different transducers in the ultrasonic spray coating system confirm the effectiveness of the algorithm.
審定書 i
致 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖目錄 vii
表目錄 ix
第 一 章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文貢獻 5
第 二 章 超音波噴塗系統 6
2.1 超音波換能器 7
2.2 超音波換能器驅動於共振點與反共振點的特性 8
第 三 章 鎖相迴路基本操作原理 10
3.1 鎖相迴路簡介 10
3.2 鎖相迴路電路架構 10
3.2.1相位頻率偵測器 11
3.2.2充電泵與迴路濾波器 12
3.2.3電壓控制振盪器 13
第 四 章 鎖頻迴路應用於超音波噴塗系統 14
4.1 鎖相迴路應用於AB類驅動電路 14
4.1.1數位鎖頻演算法 16
4.2.2FPGA程式規劃 16
4.2鎖相迴路應用於D類驅動電路 22
第 五 章 量測結果 33
5.1 系統實作架構 33
5.1.1超音波AB類驅動系統實作架構 33
5.1.2超音波D類驅動系統實作架構 36
5.2 鎖頻效果量測 38
5.2.1將鎖相迴路用於AB類驅動電路的量測結果 38
5.2.2將鎖相迴路用於D類驅動電路的量測結果 40
第 六 章 結論 43
參考文獻 44
[1]余祥華、賴姵穎、謝逸飛,適用不同阻抗特性之功率可調超音波驅動器開發期末報告,經濟部,2014。
[2]謝耀南、李訓谷、陳忠詰、林貝坤、楊智博,節能隔熱塗佈技術及應用研討會講義,財團法人精密機械研究發展中心,2013。
[3]鄭振東,超音波工程,全華圖書,1999。
[4]B. Mortimer, T. du Bruyn, J. Davies, and J. Tapson, “High power resonant tracking amplifier using admittance locking,” Ultrasonics, 39, pp. 257-261, 2001.
[5]J. Aldrich, S. Sherrit, X. Bao, Y. Bar-Cohen, M. Badescu, and Z. Chang, “Extremum-seeking control for an ultrasonic/sonic driller/corer (USDC) driven at high-power,” Proc. of SPIE, Modeling, Signal Processing, and Control for Smart Structures, 2006.
[6]V.I. Babitsky, V.K. Astashev, and A.N. Kalashnikov, “Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications,” Ultrasonics, vol. 42, pp.29-35, 2004.
[7]S. Voronina and V. Babitsky, “Autoresonant control strategies of loaded ultrasonic transducer for machining applications,” Journal of Sound and Vibration, vol.313, pp. 395-417, 2008.
[8]C.W. Ha, J.C. Gong, S.C. Shin, and B.O. Min, “Frequency-control-type piezo actuator driving circuit and method of driving the same,” U.S. Patent no. 7471029, 2008.
[9]L.J. Smith, “Use of phase-locked-loop control for driving ultrasonic transducers,” NASA Technical Note D-3567, Aug. 1966.
[10]J. Twiefel, M. Klubal, C. Paiz, S. Mojrzisch, and H. Kruger, “Digital signal processing for an adaptive phase-locked loop controller,” Proc. of SPIE, Modeling, Signal Processing, and Control for Smart Structures, Apr. 2008.
[11]S. Mishiro and S. Hamada, “Method of and apparatus for driving an ultrasonic transducer including a phase locked loop and a sweep circuit,” U.S. Patent no. 4275363, 1981.
[12]C. Kauczor and N. Frohleke, “Inverter topologies for ultrasonic piezoelectric transducers with high mechanical Q-factor,” IEEE 35th Power Electronics Specialists Conference, vol. 4, pp. 2736-2741, 2004.
[13]W. Littmann, T. Hemsel, C. Kauczor, J. Wallaschek, and M. Sinha, “Load-adaptive Phase-Controller for resonant driven piezoelectric Devices,” Proc. of WCU, pp. 547-550, 2003.
[14]曾明鴻,量化控制與順滑模態調變應用之應用,國立中山大學電機工程學系博士論文,2014。
[15]謝逸飛,具功率控制及負載補償的SEPIC轉換器設計,國立中山大學電機工程學系碩士論文,2015。
[16]S. Hirose, M. Aoyagi, Y. Tomikawa, S. Takahashi, and K. Uchino, “High power characteristics at antiresonance frequency of piezoelectric transducers,” Ultrasonics, 34, pp. 213-217, 1996.
[17]K. Uchino, J.H. Zheng, Y.H. Chen, X.H. Du, J. Ryu, T. Gao, S. Ural, S. Priya, and S. Hirose, “Loss mechanisms and high power piezoelectrics,” Journal of Materials Science, 41, pp. 217-228, 2006.
[18]L. Svilainis and G. Motiejunas, “Power amplifier for ultrasonic transducer excitation,” Journal of Ultragarsas, vol. 1, pp. 30-36, 2006.
[19]M. Prokic, Piezoelectric transducers modeling and characterization, MPI, 2004.
[20]何中庸,PLL頻率合成與鎖相電路設計,全華圖書,2001。
[21]宋國明,PLL電路設計及應用,全華圖書,2006。
[22]陳文華,鎖相迴路(PLL)原理與應用,全華圖書,1980。
[23]Y. Peng, J. Xu and Y. Li, “Modeling and simulation of an improved PLL-controlled circuit for series resonant inverter,” in Proc. IEEE International Conference on Electrical Machines and System, pp. 1786-1788, 2008.
[24]A. Tangel, M. Yakut , E. Afacan, U. Güvenç, and H. Şengül, “An FPGA- Based multiple-output PWM pulse generator for ultrasonic cleaning machines,” in Proc. IEEE International Conference on Applied Electronics, pp. 1-4, 2010.
[25]Y. Wang, M.J. Draper, S.M. Denley, F.V.P. Robinson, and P.R. Shepherd, “Control scheme evaluation for class-D amplifiers in a power-ultrasonic system,” Proc. 6th IET International Conference on Power Electronics, Machines and Drives, 2012.
[26]N. Ghasemi, Improving ultrasound excitation systems using a flexible power supply with adjustable voltage and frequency to drive piezoelectric transducers, Ph.D. dissertation, Queensland University of Technology, Australia, 2012.
[27]R. Li, N. Frohleke, and J. Bocker, “LLCC-PWM inverter for driving high-power piezoelectric actuators,” Proc. 13th International Power Electronics and Motion Control Conference, pp. 159-164, 2008.
[28]K. Agbosson, J. Dion, S. Carignan, M. Abdelkrim, and A. Choriti, “Class D amplifier for a power piezoelectric load,” IEEE Transaction on Ultrasonics, Ferroelectics, and Frequency Control, vol. 47, no. 4, pp. 1036-1041, 2000.
[29]H. S. Patel and R. G. Hoft, “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters Part I Harmonic Elimination,” IEEE Transaction on Industry Application, vol. IA-9, no. 3, pp. 310-317, 1973.
[30]王星翰,具強健性之重複控制器應用於直流至交流轉換器,國立中山大學電機工程學系碩士論文,2012。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top