跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳誼家
研究生(外文):Chen, Yi-Chia
論文名稱:應用於電化學感測之微瓦雙模式前端積體電路
論文名稱(外文):Microwatt Dual-Mode Front-End IC for Electrochemical Sensing Applications
指導教授:廖育德
指導教授(外文):Liao, Yu-Te
口試委員:陳新陳柏宏
口試委員(外文):Chen, HsinChen, Po-Hung
口試日期:2019-06-17
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:59
中文關鍵詞:循環伏安法電化學感測低功耗
外文關鍵詞:cyclic voltammetryelectrochemical sensinglow power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
隨著CMOS製程的進步,單晶片技術使電化學傳感系統更加小型化,並能使其適用於更快速檢測以及符合經濟效益的醫療診斷和環境監測系統。然而,低功耗和低雜訊仍然是現代電化學感測系統的最大挑戰。為了應對未來的臨床分析,此類晶片必須實現低功耗、微型化體積、快速和多信息傳感機制,以實現更準確和方便的電化學感測系統。
本論文提出了一微瓦雙模式電化學感測晶片,該晶片整合了三角波產生器和電流鏡架構的低雜訊截波穩定(chopper-stabilization)恆電位電路。此三角波產生器利用電流微縮技術,在無需大尺寸之被動元件情況下,提供一低頻率之三角波訊號以實現循環伏安法(CV)量測功能。該設計採用0.18μm CMOS製程製作,在±5μA的電流範圍內實現41pA最低電流解析度,同時保持R2線性度為0.998。當檢測到最大5μA感應電流時,系統從1.2V供應電源消耗16μW。其等效效率轉換為0.31、感應電流動態範圍為108dB。此晶片在雙模式(CA / CV)測量中,分別能與市售三電極式金電極以及與中興大學合作的矽奈米線感測器整合測試,量測sub-millimolar 和 femto-molar之鐵氰化鉀、多巴胺檢測變化。
With the advanced CMOS process, single-chip integration technology has made electrochemical sensing systems more miniaturized, making them suitable for fast and cost-effective medical screening and environmental monitoring systems. However, low power consumption and low noise are still the biggest challenges of current electrochemical sensing systems. In order to cope with future clinical analysis, the integrated IC must achieve low-power, small-volume, fast and multi-information sensing mechanisms for accurate and convenient electrochemical sensing. In this thesis, a microwatt electrochemical sensing chip with an integrated current-reducer pattern generator and a current-mirror based low-noise chopper-stabilization potentiostat circuit is presented. The pattern generator, utilizing the current reducer technique, creates a sub-Hz ramp signal for the cyclic voltammetry (CV) measurement without large-size passive components. The proposed design adopts the chopper-stabilization and low-noise biasing technique for the potentiostat and a counter-based time-to-digital converter to reduce the amplitude noise effects and to convert the sensing current signal to digital codes for further data processing. The design is fabricated using a 0.18-μm CMOS process and achieves a 41pA current resolution in the current range of ± 5μA while maintaining the R2 linearity of 0.998. The system consumes 16μW from a 1.2V supply when a maximum 5μA sensing current is detected. The power efficiency of the readout interface is 0.31, and the sensing current dynamic range is 108dB. The design is fully integrated into a single chip and is successfully tested in the dual-mode (CA/CV) measurements with commercial gold electrodes in a potassium ferricyanide solution and nanowire sensor in the dopamine solution in sub-millimolar and femto-molar concentrations, respectively.
Contents vi
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Challenges for CMOS electrochemical instrumentation 4
1.3 Target application and specs 4
1.4 Thesis organization 5
Chapter 2 Review of Electrochemical Sensing 6
2.1 Overview 6
2.2 Principles and structure of Electrochemical Transducer 7
2.3 Electrochemical sensing methods 9
2.4 Electrochemical instrumentation for amperometric sensing 12
2.4.1 Potentiostat 13
2.4.2 Resistive feedback based TIA 14
2.4.3 Switched-capacitive feedback based TIA 16
2.4.4 Current conveyor 17
2.4.5 Current-mirror based potentiostat 19
2.4.6 Summary of current readout topologies 21
Chapter 3 Microwatt Dual-Mode Front-End IC for Electrochemical Sensing Applications 22
3.1 Motivation and challenges 22
3.2 System architecture 23
3.3 Proposed front-end circuit for electrochemical sensing 24
3.3.1 Current-mirror based potentiostat 24
3.3.2 Noise analysis for the current-mirror-based potentiostat 25
3.3.3 Design of the rail to rail chopper opamp 28
3.3.4 Current to frequency converter 30
3.3.5 Time to digital converter 32
3.3.6 On-chip waveform generator 33
3.4 Experimental Results 39
3.4.1 Chip measurement results 40
3.4.2 Sensor integration measurement results 44
3.4.3 Comparison table 51
3.5 Brief summary 52
Chapter 4 Conclusion and Future Work 53
Reference 55
Reference
[1] M. Mukherjee, L. Shu, L. Hu, G. P. Hancke, and C. Zhu, "Sleep Scheduling in Industrial Wireless Sensor Networks for Toxic Gas Monitoring," IEEE Wireless Communications, vol. 24, pp. 106-112, 2017.
[2] A. Bott, "Voltammetric determination of trace concentrations of metals in the environment," Current Separations, vol. 14, pp. 24-30, 1995.
[3] W. Huang, S. Deb, Y. Seo, S. Rao, M. Chiao, and J. C. Chiao, "A Passive Radio-Frequency pH-Sensing Tag for Wireless Food-Quality Monitoring," IEEE Sensors Journal, vol. 12, pp. 487-495, 2012.
[4] J. Tsai, C. Kuo, S. Lin, F. Lin, and Y. Liao, "A Wirelessly Powered CMOS Electrochemical Sensing Interface With Power-Aware RF-DC Power Management," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, pp. 2810-2820, 2018.
[5] F. Lin, S. Lu, and Y. Liao, "A 2.2μW, -12 dBm RF-Powered Wireless Current Sensing Readout Interface IC With Injection-Locking Clock Generation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, pp. 950-959, 2016.
[6] S. Smith, J. G. Korvink, D. Mager, and K. Land, "The potential of paper-based diagnostics to meet the ASSURED criteria," RSC Advances, vol. 8, pp. 34012-34034, 2018.
[7] Y. Liao, H. Yao, A. Lingley, B. Parviz, and B. P. Otis, "A 3-μW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring," IEEE Journal of Solid-State Circuits, vol. 47, pp. 335-344, 2012.
[8] P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard, "Active CMOS Sensor Array for Electrochemical Biomolecular Detection," IEEE Journal of Solid-State Circuits, vol. 43, pp. 1859-1871, 2008.
[9] B. Goldstein, D. Kim, J. Xu, T. K. Vanderlick, and E. Culurciello, "CMOS Low Current Measurement System for Biomedical Applications," IEEE Transactions on Biomedical Circuits and Systems, vol. 6, pp. 111-119, 2012.
[10] R. F. B. Turner, D. J. Harrison, and H. P. Baltes, "A CMOS potentiostat for amperometric chemical sensors," IEEE Journal of Solid-State Circuits, vol. 22, pp. 473-478, 1987.
[11] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner’s Guide to Cyclic Voltammetry," Journal of Chemical Education, vol. 95, pp. 197-206, 2018/02/13 2018.
[12] H. Li, S. Parsnejad, E. Ashoori, C. Thompson, E. K. Purcell, and A. J. Mason, "Ultracompact Microwatt CMOS Current Readout With Picoampere Noise and Kilohertz Bandwidth for Biosensor Arrays," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, pp. 35-46, 2018.
[13] A. Hassibi and T. H. Lee, "A Programmable 0.18-μm CMOS Electrochemical Sensor Microarray for Biomolecular Detection," IEEE Sensors Journal, vol. 6, pp. 1380-1388, 2006.
[14] R. J. Reay, S. P. Kounaves, and G. T. A. Kovacs, "An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation," in Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94, 1994, pp. 162-163.
[15] H. M. Jafari and R. Genov, "Chopper-Stabilized Bidirectional Current Acquisition Circuits for Electrochemical Amperometric Biosensors," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp. 1149-1157, 2013.
[16] M. H. Nazari and R. Genov, "A fully differential CMOS potentiostat," in 2009 IEEE International Symposium on Circuits and Systems, 2009, pp. 2177-2180.
[17] X. Liu, L. Li, B. Awate, R. M. Worden, G. Reguera, and A. J. Mason, "Biosensor array microsystem on a CMOS amperometric readout chip," in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2011, pp. 305-308.
[18] K. T. D. R. Thevenot, R. A. Durst, and G. S. Wilsond, "Electrochemical Biosensors: Recommended Definitions and Classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001.
[19] A. J. B. a. L. R. Faulkner, Ed., Electrochemical methods: fundamentals and applications. Wiley New York, 2000, p.^pp. Pages.
[20] J. Park, K. Park, T. Kim, S. Shin, C. Park, and H. Yoo, "Three-Electrode Metal-Oxide Gas Sensor System With CMOS Interface IC," IEEE Sensors Journal, vol. 17, pp. 784-793, 2017.
[21] T. Instruments. Configurable AFE Potentiostat for Low-Power ChemicalSensing Applications [Online]. Available: http://www.ti.com/lit/ds/symlink/lmp91000.pdf
[22] I. Analog Devices. Precision Analog Microcontroller with Chemical Sensor Interface [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/ADuCM355.pdf
[23] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed.: McGraw-Hill Education.
[24] D. Kim, B. Goldstein, W. Tang, F. J. Sigworth, and E. Culurciello, "Noise Analysis and Performance Comparison of Low Current Measurement Systems for Biomedical Applications," IEEE Transactions on Biomedical Circuits and Systems, vol. 7, pp. 52-62, 2013.
[25] J. K. Rosenstein, S. Ramakrishnan, J. Roseman, and K. L. Shepard, "Single Ion Channel Recordings with CMOS-Anchored Lipid Membranes," Nano Letters, vol. 13, pp. 2682-2686, 2013/06/12 2013.
[26] J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, and K. L. Shepard, "Integrated nanopore sensing platform with sub-microsecond temporal resolution," Nature Methods, vol. 9, p. 487, 03/18/online 2012.
[27] C. Enz and G. C. Temes, Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization vol. 84, 1996.
[28] A. Gore, S. Chakrabartty, S. Pal, and E. C. Alocilja, "A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 2357-2363, 2006.
[29] C. Yang, S. R. Jadhav, R. M. Worden, and A. J. Mason, "Compact Low-Power Impedance-to-Digital Converter for Sensor Array Microsystems," IEEE Journal of Solid-State Circuits, vol. 44, pp. 2844-2855, 2009.
[30] C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, et al., "CMOS DNA Sensor Array With Integrated A/D Conversion Based on Label-Free Capacitance Measurement," IEEE Journal of Solid-State Circuits, vol. 41, pp. 2956-2964, 2006.
[31] H. Jafari, L. Soleymani, and R. Genov, "16-Channel CMOS Impedance Spectroscopy DNA Analyzer With Dual-Slope Multiplying ADCs," IEEE Transactions on Biomedical Circuits and Systems, vol. 6, pp. 468-478, 2012.
[32] M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, and N. V. Thakor, "VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 63-72, 2007.
[33] M. Crescentini, M. Bennati, M. Carminati, and M. Tartagni, "Noise Limits of CMOS Current Interfaces for Biosensors: A Review," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, pp. 278-292, 2014.
[34] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, and A. Hassibi, "A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 379-390, 2010.
[35] R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, and N. Thakor, "16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 2371-2376, 2006.
[36] M. H. Nazari, H. Mazhab-Jafari, L. Leng, A. Guenther, and R. Genov, "CMOS Neurotransmitter Microarray: 96-Channel Integrated Potentiostat With On-Die Microsensors," IEEE Transactions on Biomedical Circuits and Systems, vol. 7, pp. 338-348, 2013.
[37] C. Hsu, H. Jiang, A. G. Venkatesh, and D. A. Hall, "A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing," IEEE Transactions on Biomedical Circuits and Systems, vol. 9, pp. 652-661, 2015.
[38] J. Yun, J. Kim, and J. Park, "An integrated potentiostat sensor with digitally-controlled input-parasitic compensation for nanopore applications," in 2015 IEEE SENSORS, 2015, pp. 1-4.
[39] M. M. Ahmadi and G. A. Jullien, "Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, pp. 1339-1348, 2009.
[40] S. S. Ghoreishizadeh, C. Baj-Rossi, A. Cavallini, S. Carrara, and G. D. Micheli, "An Integrated Control and Readout Circuit for Implantable Multi-Target Electrochemical Biosensing," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, pp. 891-898, 2014.
[41] M. Maruyama, S. Taguchi, M. Yamanoue, and K. Iizuka, "An Analog Front-End for a Multifunction Sensor Employing a Weak-Inversion Biasing Technique With 26 nVrms, 25 aCrms, and 19 fArms Input-Referred Noise," IEEE Journal of Solid-State Circuits, vol. 51, pp. 2252-2261, 2016.
[42] A. Paidimarri, D. Griffith, A. Wang, G. Burra, and A. P. Chandrakasan, "An RC Oscillator With Comparator Offset Cancellation," IEEE Journal of Solid-State Circuits, vol. 51, pp. 1866-1877, 2016.
[43] J. Jiang, W. Shu, and J. S. Chang, "A 65-nm CMOS Low Dropout Regulator Featuring >60-dB PSRR Over 10-MHz Frequency Range and 100-mA Load Current Range," IEEE Journal of Solid-State Circuits, vol. 53, pp. 2331-2342, 2018.
[44] G. Ferrari, F. Gozzini, A. Molari, and M. Sampietro, "Transimpedance Amplifier for High Sensitivity Current Measurements on Nanodevices," IEEE Journal of Solid-State Circuits, vol. 44, pp. 1609-1616, 2009.
[45] F. Gozzini, G. Ferrari, and M. Sampietro, "Linear transconductor with rail-to-rail input swing for very large time constant applications," Electronics Letters, vol. 42, pp. 1069-1070, 2006.
[46] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species," Science, vol. 293, p. 1289, 2001.
[47] M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors," Nature Materials, vol. 6, p. 379, 04/22/online 2007.
[48] B. P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, and C. M. Lieber, "Electrical Recording from Hearts with Flexible Nanowire Device Arrays," Nano Letters, vol. 9, pp. 914-918, 2009/02/11 2009.
[49] P. Prabha, S. J. Kim, K. Reddy, S. Rao, N. Griesert, A. Rao, et al., "A Highly Digital VCO-Based ADC Architecture for Current Sensing Applications," IEEE Journal of Solid-State Circuits, vol. 50, pp. 1785-1795, 2015.
[50] J. Guo, W. Ng, J. Yuan, S. Li, and M. Chan, "A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, pp. 567-578, 2016.
[51] K. A. A. Mamun, S. K. Islam, D. K. Hensley, and N. McFarlane, "A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, pp. 807-816, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top