|
Reference [1] M. Mukherjee, L. Shu, L. Hu, G. P. Hancke, and C. Zhu, "Sleep Scheduling in Industrial Wireless Sensor Networks for Toxic Gas Monitoring," IEEE Wireless Communications, vol. 24, pp. 106-112, 2017. [2] A. Bott, "Voltammetric determination of trace concentrations of metals in the environment," Current Separations, vol. 14, pp. 24-30, 1995. [3] W. Huang, S. Deb, Y. Seo, S. Rao, M. Chiao, and J. C. Chiao, "A Passive Radio-Frequency pH-Sensing Tag for Wireless Food-Quality Monitoring," IEEE Sensors Journal, vol. 12, pp. 487-495, 2012. [4] J. Tsai, C. Kuo, S. Lin, F. Lin, and Y. Liao, "A Wirelessly Powered CMOS Electrochemical Sensing Interface With Power-Aware RF-DC Power Management," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, pp. 2810-2820, 2018. [5] F. Lin, S. Lu, and Y. Liao, "A 2.2μW, -12 dBm RF-Powered Wireless Current Sensing Readout Interface IC With Injection-Locking Clock Generation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, pp. 950-959, 2016. [6] S. Smith, J. G. Korvink, D. Mager, and K. Land, "The potential of paper-based diagnostics to meet the ASSURED criteria," RSC Advances, vol. 8, pp. 34012-34034, 2018. [7] Y. Liao, H. Yao, A. Lingley, B. Parviz, and B. P. Otis, "A 3-μW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring," IEEE Journal of Solid-State Circuits, vol. 47, pp. 335-344, 2012. [8] P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard, "Active CMOS Sensor Array for Electrochemical Biomolecular Detection," IEEE Journal of Solid-State Circuits, vol. 43, pp. 1859-1871, 2008. [9] B. Goldstein, D. Kim, J. Xu, T. K. Vanderlick, and E. Culurciello, "CMOS Low Current Measurement System for Biomedical Applications," IEEE Transactions on Biomedical Circuits and Systems, vol. 6, pp. 111-119, 2012. [10] R. F. B. Turner, D. J. Harrison, and H. P. Baltes, "A CMOS potentiostat for amperometric chemical sensors," IEEE Journal of Solid-State Circuits, vol. 22, pp. 473-478, 1987. [11] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner’s Guide to Cyclic Voltammetry," Journal of Chemical Education, vol. 95, pp. 197-206, 2018/02/13 2018. [12] H. Li, S. Parsnejad, E. Ashoori, C. Thompson, E. K. Purcell, and A. J. Mason, "Ultracompact Microwatt CMOS Current Readout With Picoampere Noise and Kilohertz Bandwidth for Biosensor Arrays," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, pp. 35-46, 2018. [13] A. Hassibi and T. H. Lee, "A Programmable 0.18-μm CMOS Electrochemical Sensor Microarray for Biomolecular Detection," IEEE Sensors Journal, vol. 6, pp. 1380-1388, 2006. [14] R. J. Reay, S. P. Kounaves, and G. T. A. Kovacs, "An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation," in Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94, 1994, pp. 162-163. [15] H. M. Jafari and R. Genov, "Chopper-Stabilized Bidirectional Current Acquisition Circuits for Electrochemical Amperometric Biosensors," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp. 1149-1157, 2013. [16] M. H. Nazari and R. Genov, "A fully differential CMOS potentiostat," in 2009 IEEE International Symposium on Circuits and Systems, 2009, pp. 2177-2180. [17] X. Liu, L. Li, B. Awate, R. M. Worden, G. Reguera, and A. J. Mason, "Biosensor array microsystem on a CMOS amperometric readout chip," in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2011, pp. 305-308. [18] K. T. D. R. Thevenot, R. A. Durst, and G. S. Wilsond, "Electrochemical Biosensors: Recommended Definitions and Classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001. [19] A. J. B. a. L. R. Faulkner, Ed., Electrochemical methods: fundamentals and applications. Wiley New York, 2000, p.^pp. Pages. [20] J. Park, K. Park, T. Kim, S. Shin, C. Park, and H. Yoo, "Three-Electrode Metal-Oxide Gas Sensor System With CMOS Interface IC," IEEE Sensors Journal, vol. 17, pp. 784-793, 2017. [21] T. Instruments. Configurable AFE Potentiostat for Low-Power ChemicalSensing Applications [Online]. Available: http://www.ti.com/lit/ds/symlink/lmp91000.pdf [22] I. Analog Devices. Precision Analog Microcontroller with Chemical Sensor Interface [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/ADuCM355.pdf [23] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed.: McGraw-Hill Education. [24] D. Kim, B. Goldstein, W. Tang, F. J. Sigworth, and E. Culurciello, "Noise Analysis and Performance Comparison of Low Current Measurement Systems for Biomedical Applications," IEEE Transactions on Biomedical Circuits and Systems, vol. 7, pp. 52-62, 2013. [25] J. K. Rosenstein, S. Ramakrishnan, J. Roseman, and K. L. Shepard, "Single Ion Channel Recordings with CMOS-Anchored Lipid Membranes," Nano Letters, vol. 13, pp. 2682-2686, 2013/06/12 2013. [26] J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, and K. L. Shepard, "Integrated nanopore sensing platform with sub-microsecond temporal resolution," Nature Methods, vol. 9, p. 487, 03/18/online 2012. [27] C. Enz and G. C. Temes, Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization vol. 84, 1996. [28] A. Gore, S. Chakrabartty, S. Pal, and E. C. Alocilja, "A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 2357-2363, 2006. [29] C. Yang, S. R. Jadhav, R. M. Worden, and A. J. Mason, "Compact Low-Power Impedance-to-Digital Converter for Sensor Array Microsystems," IEEE Journal of Solid-State Circuits, vol. 44, pp. 2844-2855, 2009. [30] C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, et al., "CMOS DNA Sensor Array With Integrated A/D Conversion Based on Label-Free Capacitance Measurement," IEEE Journal of Solid-State Circuits, vol. 41, pp. 2956-2964, 2006. [31] H. Jafari, L. Soleymani, and R. Genov, "16-Channel CMOS Impedance Spectroscopy DNA Analyzer With Dual-Slope Multiplying ADCs," IEEE Transactions on Biomedical Circuits and Systems, vol. 6, pp. 468-478, 2012. [32] M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, and N. V. Thakor, "VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 63-72, 2007. [33] M. Crescentini, M. Bennati, M. Carminati, and M. Tartagni, "Noise Limits of CMOS Current Interfaces for Biosensors: A Review," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, pp. 278-292, 2014. [34] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, and A. Hassibi, "A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 379-390, 2010. [35] R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, and N. Thakor, "16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 2371-2376, 2006. [36] M. H. Nazari, H. Mazhab-Jafari, L. Leng, A. Guenther, and R. Genov, "CMOS Neurotransmitter Microarray: 96-Channel Integrated Potentiostat With On-Die Microsensors," IEEE Transactions on Biomedical Circuits and Systems, vol. 7, pp. 338-348, 2013. [37] C. Hsu, H. Jiang, A. G. Venkatesh, and D. A. Hall, "A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing," IEEE Transactions on Biomedical Circuits and Systems, vol. 9, pp. 652-661, 2015. [38] J. Yun, J. Kim, and J. Park, "An integrated potentiostat sensor with digitally-controlled input-parasitic compensation for nanopore applications," in 2015 IEEE SENSORS, 2015, pp. 1-4. [39] M. M. Ahmadi and G. A. Jullien, "Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, pp. 1339-1348, 2009. [40] S. S. Ghoreishizadeh, C. Baj-Rossi, A. Cavallini, S. Carrara, and G. D. Micheli, "An Integrated Control and Readout Circuit for Implantable Multi-Target Electrochemical Biosensing," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, pp. 891-898, 2014. [41] M. Maruyama, S. Taguchi, M. Yamanoue, and K. Iizuka, "An Analog Front-End for a Multifunction Sensor Employing a Weak-Inversion Biasing Technique With 26 nVrms, 25 aCrms, and 19 fArms Input-Referred Noise," IEEE Journal of Solid-State Circuits, vol. 51, pp. 2252-2261, 2016. [42] A. Paidimarri, D. Griffith, A. Wang, G. Burra, and A. P. Chandrakasan, "An RC Oscillator With Comparator Offset Cancellation," IEEE Journal of Solid-State Circuits, vol. 51, pp. 1866-1877, 2016. [43] J. Jiang, W. Shu, and J. S. Chang, "A 65-nm CMOS Low Dropout Regulator Featuring >60-dB PSRR Over 10-MHz Frequency Range and 100-mA Load Current Range," IEEE Journal of Solid-State Circuits, vol. 53, pp. 2331-2342, 2018. [44] G. Ferrari, F. Gozzini, A. Molari, and M. Sampietro, "Transimpedance Amplifier for High Sensitivity Current Measurements on Nanodevices," IEEE Journal of Solid-State Circuits, vol. 44, pp. 1609-1616, 2009. [45] F. Gozzini, G. Ferrari, and M. Sampietro, "Linear transconductor with rail-to-rail input swing for very large time constant applications," Electronics Letters, vol. 42, pp. 1069-1070, 2006. [46] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species," Science, vol. 293, p. 1289, 2001. [47] M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors," Nature Materials, vol. 6, p. 379, 04/22/online 2007. [48] B. P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, and C. M. Lieber, "Electrical Recording from Hearts with Flexible Nanowire Device Arrays," Nano Letters, vol. 9, pp. 914-918, 2009/02/11 2009. [49] P. Prabha, S. J. Kim, K. Reddy, S. Rao, N. Griesert, A. Rao, et al., "A Highly Digital VCO-Based ADC Architecture for Current Sensing Applications," IEEE Journal of Solid-State Circuits, vol. 50, pp. 1785-1795, 2015. [50] J. Guo, W. Ng, J. Yuan, S. Li, and M. Chan, "A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, pp. 567-578, 2016. [51] K. A. A. Mamun, S. K. Islam, D. K. Hensley, and N. McFarlane, "A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, pp. 807-816, 2016.
|