跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/03 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王立杰
研究生(外文):Wang, Li-Chieh
論文名稱:可互溶流體於Hele-Shaw Cell 下界面不穩定現象─注入及拉升流場
論文名稱(外文):Studies on Flow Instabilities on the Miscible Fluid Interface in a Hele-Shaw Cell—Injection and Lifting
指導教授:陳慶耀
指導教授(外文):Chen, Ching-Yao
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:108
中文關鍵詞:黏滯度指狀物注入流場拉升流場流場穩定性黏滯度剖面
外文關鍵詞:viscous fingerinjection fluidlifting fluidfluid stabilityviscosity profile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
黏滯度指狀物是指於平行薄板或多孔性材料間,以低黏滯度流體驅動高黏度流體時,兩流體間介面形成代表流場不穩定的指狀物型態,在多種工業製程中,多相流流場界面的不穩定性,嚴重影響產品品質及生產效率,常見案例為原油開採時以水性溶劑為驅動流體注入多孔性岩層推動更為黏稠原油時,卻因指狀物型態出現,而使水性溶劑穿透原油,降低開採效率。另平行薄板間高度改變形成的徑向拉升流場,也因可運用於黏著與潤滑分析,成為另一重要研究議題,本論文中運用高精確模擬(highly accurate simulation)之數值方法,分別以一致形(monotonic)與非一致形(nonmonotonic)黏滯度剖面之可互溶流體,探討徑向注入微小間隙的兩平行板間(即Hele-Shaw Cell)與間隙隨時間增大之Hele-Shaw Cell 徑向流場之界面演變,論文內容包含兩大
部分:
第一部份於注入流場進行大量系統化的數值模擬,針對不同對流/擴散比(Peclet 值)與黏滯度剖面參數討論,首先除以過去學者慣用之指數型(下凹曲線) 一致形黏滯度剖面進行研究外,另外定義線性及反指數型(上凸曲線)一致性黏滯度剖面與非一致形黏滯度剖面進行比較,結果顯示黏滯度對比固定時,各種黏滯度剖面對注入流場之穩定性無顯著影響,但如非一致性黏滯度剖面與上凸黏滯度剖面交錯,將激化流體介面間的不穩定性。另經由系統化改變非一致形黏滯度分布各參數值,觀察其對界面指狀化圖形之影響,除觀察到多種有趣之介面型態,諸如產生於一致形黏滯度分布所無法觀察到的成對雙渦旋流場及逆指狀物結構等現象,最後對非一致性黏滯度剖面各參數對整體注入流場穩定性影響進行討論。
第二部分首先探討不同拉升函數與初始擾動對流場穩定性之影響,相對於定量注入可互溶流體於徑向Hele-Shaw Cell 流場會產生指狀物尾端開叉與分枝等多變流場現象,平行板間隙隨時間成指數化關係變化的拉升流場形成更錯綜複雜的流場現象,近期研究指出經由調整平板間隙與時間函數關係可控制流場指狀物的形態,本研究除得到指數拉升方式可較線性拉升方式獲得更不穩定之流場,亦歸納出高Péclet值與高黏滯度對比會增加指狀物長度,另對初始條件與擾動設定對流場穩定度影響於指數函數拉升時影響較大,線性函數拉升則幾乎沒有影響。進而討論不同黏滯度剖面之可互溶流體於指數拉升流場之界面
型態,影響情況較注入流場顯著。接著採與第一部份相同作法,探討不同黏滯度剖面之可互溶流體於拉升流場之影響,發現黏滯度剖面對流場穩定性影響程度於拉升流場較注入流場大,且不穩定性均遵循下凹曲線>直線>上凸曲線順序,最後對非一致性黏滯度剖面各參數對拉升流場穩定性影響進行討論。
Viscous fingering is an interfacial fluid flow instability that occurs when less viscous fluid displaces another more viscous one in a Hele-Shaw cell or porous media, leading to the formation of finger-like pattern at the interface of both fluids. The interfacial evolution of multiphase flows will severely impact on the quality of production and efficiency in a variety of practical application of industrial process. Most frequent example of this instability is that of oil recovery for which viscous fingering takes place when an aqueous solution displaces more viscous oil in underground reservoirs, leading to the formation of nontrivial fingerlike structure and reduce the efficiency of the displacement process. Another particularly
interesting variation of the classic radial flow is the investigation of fingering instabilities in Hele-Shaw cells presenting variable gap spacing. This is also a very important issue in many industrial areas including adhesion, lubrication, and colloidal hydrodynamics. In this dissertation, we carried out the highly accurate simulation to investigate the interfacial evolution in two scenarios-radial injection-driven miscible flow and lifting radial Hele-Shaw flow, both with the monotonic and nonmonotonic viscosity profile. So, the thesis consists of two parts:
Part 1 focus on radial injection-driven miscible flow in a Hele-Shaw cell and covers three major topics. To begin with, we perform numerical experiments in a wide range to study the dispersion relation on both the Péclet number and the parameters of the viscosity profile. A monotonic viscosity-concentration relation of exponential type (concave) by other scholars is assumed, and a linear and reverse (convex) monotonic viscosity profiles and nonmonotonic one are also discussed. Results of this study
show that as the overall viscosity contrast held constant, nonmonotonic viscosity profile lead to a more stable flow than that of monotonic one, and there are no significant differences in different viscosity profiles. However, if the nonmonotonic viscosity profile crosses the convex monotonic viscosity profile, the nonmonotonic feature enhances the prominence of interfacial instability. Then, a great variety of morphological behaviors is systematically introduced. In general, the nonmonotonic feature enhances
the prominence of interfacial instability. Formation of dual vortex pairs and “reverse fingering”, where the fingers spread farther in the backward than in the forward direction are observed, which are not present in monotonic
viscosity profile. Finally, we have carried out a parameter study to understand the effects of nonmonotonicity on the stability of the injection flow.
In part 2, discussions start with the investigation of the influence of lifting scenario and the perturbation set. Contrast to the injection-driven miscible flow in radial Hele-Shaw cells which leads to the formation of morphing flow phenomenon of finger tip-splitting and side-branch events are plentiful if the injection rate is constant with time. More complicated flow are present for time-dependent gap flow which results in different kinds of patterns, and leads to intricate morphologies if the cell’s gap width
grows exponentially with time. Recent studies show that the growing of intricate patterns due to lifting can be ntrolled by properly adjusting the
time-dependent gap width. Moreover, we found the exponential lifting case will cause the flow more unstable than the variant lifting situation. We also deduce higher Péclet number and viscous contrast (A in monotonic viscosity profile and μm in nonmonotonic one) demonstrate more vigorous fingering. The sensitivity of the system to changes in the initial conditions and perturbation set is also discussed. Next, the effects of four viscosity profiles as stated in part 1 have been investigated. Unlike injection flow,the stability of three monotonic viscosity profiles are always in the series of concave, linear and convex. However, as injection flow, if the nonmonotonic viscosity profile crosses the convex curve will enhances the
prominence of interfacial instability. Finally, we have carried out a parameter study to understand the effects of nonmonotonicity viscosity profile on the stability of the lifting flow.
中文摘要................................................... i
Abstract ............................................... iii
誌謝......................................................vi
Contents................................................ vii
List of Figures.......................................... ix
Nomenclature .......................................... xvii
Chapter 1 Introduction.................................... 1
1.1 Literatures Review .................................. 1
1.2 Objective and Organization of This Thesis............ 6
Chapter 2 General Feature ................................ 9
2.1 Physical Problem..................................... 9
2.2 Governing Equations................................. 11
2.2.1 Viscosity Profile .............................. 11
2.2.2 Injection-Driven Radial Hele-Shaw flow ......... 13
2.2.3 Time-dependent Gap Hele-Shaw Cell .............. 17
2.3 Numerical Scheme ................................... 21
2.4 Validation ......................................... 23
Chapter 3 Fingering Instability of Miscible Injection Hele-Shaw Flows................................................27
3.1 Monotonic Viscosity Profile ........................ 27
3.2 Nonmonotonic Viscosity Profile ..................... 28
3.2.1 Influence of the Péclet number Pe .............. 29
3.2.2 Influence of the maximum viscosity μm .......... 30
3.2.3 Influence of the location of the maximum viscosity cm .......................................................33
3.2.4 Influence of the end-point viscosity contrast α ....................................................... 35
Chapter 4 Controlling Radial Fingering Patterns in Miscible Lifting viii Hele-Shaw Flow ............................. 57
4.1 Influence of the Lifting Scenarios.................. 57
4.2 Influence of the Perturbation Set ...................60
4.3 Monotonic Viscosity Profile ........................ 61
4.4 Nonmonotonic viscosity profile ..................... 63
4.4.1 Influence of the maximum viscosity μm .......... 63
4.4.2 Influence of the end-point viscosities contrast α ....................................................... 64
4.4.3 Influence of the location of the maximum viscosity cm ...................................................... 65
Chapter 5 Conclusions and Recommendations of Future Work .90
5.1 Conclusions ........................................ 90
5.1.1 Fingering Instability of Miscible Injection Hele-Shaw Flows ...............................................90
5.1.2 Controlling Radial Fingering Patterns in Miscible Lifting Hele-Shaw Flow .................................. 91
5.2 Recommendations of Future Work ..................... 92
Appendix 1 Vorticity ............................................... 93
Appendix 2 Hele-Shaw cell .................................................... 97
References .............................................. 99
Resume ................................................. 106
[1] C. T. Tan and G. M. Homsy, “Stability of Miscible Displacements in Porous Media: Radial Source Flow”, Physics of Fluids, volume 30 issue 5, pp. 1239-1245, May 1987.
[2] C. T. Tan and G. M. Homsy, “Simulation of Nonlinear Viscous Fingering in Miscible Displacement”, Physics of Fluids, volume 31 issue 6, pp. 1330-1338, June 1988.
[3] O. Manikcam and G. M. Homsy, “Stability of Miscible Displacements in Porous Media with Nonmonotonic Viscosity Profiles”, Physics of Fluids A, volume 5, issue 6, pp. 1356-1367, June 1993.
[4] H. Pascal and F. Pascal, “Dynamics of Non-Newtonian Fluid Interface in a Porous Medium: Incompressible Fluids”, International Journal for Numerical Methods in Fluids, volume 8, issue 11, pp. 1389-1401, November 1988.
[5] C. -Y. Chen and E. Meiburg, “Miscible Porous Media Displacements in the Quarter Five-Spot Configuration. Part 1. The Monotonic Case”, Journal of Fluid Mechanics, volume 371, pp. 233-268, May 1998.
[6] C. -Y. Chen, C. -H. Chen, and J. A. Miranda, “Numerical Study of Miscible fingering in a Time-dependent Gap Hele-Shaw Cell”, Physical Review E 71, 056304, 2005.
[7] E. Meiburg and C. -Y. Chen, “High-accuracy Implicit Finite Difference Simulations of Homogeneous and Heterogeneous Miscible Porous Media Flows”, Society of Petroleum Engineers Journal, volume 5 issue 2, pp. 129-137, 2000.
[8] C. -Y. Chen, C. -W. Huang, H. Gadêlha, and J. A. Miranda, “Radial Viscous Fingering in Miscible Hele-Shaw Flows: A Numerical Study”, Physical Review E 78, 016306, 2008.
[9] C. -Y. Chen, C. -W. Huang, and L. -C. Wang, “Controlling Radial Fingering Patterns in Miscible Confined Flows”, Physical Review E 82, 056308, November, 2010.
[10] O. Manikcam and G. M. Homsy, “Simulation of Viscous Fingering in Miscible Displacements with Nonmonotonic Viscosity Profile”, Physics of Fluids, volume 6 issue 1, pp. 95-107, January 1994.
[11] M. Ruith and E. Meiburg, “Miscible Rectilinear Displacements with Gravity Override, Part 1. Homogeneous Porous Medium”, Journal of Fluid Mechanics, volume 420, pp. 225-257, May 2000.
[12] B. Jha, L. Cueto-Felgueroso, and R. Juanes, “Fluid Mixing from Viscous Fingering”, Physical Review Letters, PRL 106, 194502, May 2011.
[13] C. -Y. Chen and S. Wang, “Interfacial Instabilities of Miscible Fluids in a Rotating Hele-Shaw cell”, Fluid Dynamics Research, volume 30 issue 5, pp.315–330, May 2002.
[14] C. -Y. Chen and Y. C. Liu, “Numerical Simulations of Miscible Fluids on a Rotating Hele-Shaw Cell with Effects of Coriolis Forces”, International Journal for Numerical Methods in Fluids, volume 48 issue 8, pp.853–867, July 2005.
[15] C. -Y. Chen and H. -J. Wu, “Numerical Simulations of Interfacial Instabilities on a Rotating Miscible Magnetic Droplet with Effects of Korteweg Stresses”, Physics of Fluids, volume 17, issue 4, 042101, April 2005.
[16] C. -H. Chen and C. -Y. Chen, “Numerical Simulations of Interfacial Instabilities on a Rotating Miscible Droplet in a Time-dependent Gap Hele-Shaw Cell with Significant Coriolis Effects”, International Journal for Numerical Methods in Fluids, volume 51, issue 8, pp.881–895, July
2006.
[17] C. -H. Chen and C. -Y. Chen, “Fingering Patterns on an Expanding Miscible Drop in a Rotating Hele-Shaw cell”, International Journal for Numerical Methods in Fluids, volume54, issue 10, pp.1201–1214, August 2007.
[18] C. -H. Chen and C. -Y. Chen, “Numerical Simulations of Interfacial Instabilities on a Rotating Miscible Droplet in a Time-dependent Gap Hele–Shaw Cell with Significant Coriolis Effects”, International Journal for Numerical Methods in Fluids, volume51, issue 8, pp.881–895, July 2006.
[19] C. Pankiewitz and E. Meiburg, “Miscible Porous Media
Displacements in the Quarter Five-spot Configuration. Part3.
Non-monotonic Viscosity Profiles”, Journal of Fluid Mechanics, volume 388, pp 171-195, June 1999.
[20] M. Shariati and Y. C. Yortsos, “Stability of Miscible Displacements across Stratified Porous Media”, Physics of Fluid, volume 13, number 8, pp. 2245-2257, August 2001.
[21] S. H. Hejazi, P. M. J. Trevelyan, and De Wit, “Viscous Fingering of a Miscible Reactive A+B→C interface: a Linear Stability Analysis”, Journal of Fluid Mechanics, volume 652, pp.501-528, June 2010.
[22] R. L. Chouke, “Stability Analysis for a Secondary Miscible Displacement with an Initially Sharp Solvent-oil Interface”, in Proceedings of the Society of Petroleum Engineers/Department of Energy Third Joint Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma (Society of Petroleum Engineers, Dallas, Texas, 1982),
SEP-10686, Appendix B of J. W. Gardner and J. G. J. Ypma.
[23] C. T. Tan and G. M. Homsy, “Stability of Miscible Displacements in Porous Media: Rectilinear flow”, Physics of Fluids, volume 29, issue 11, pp. 3549-3556, November 1986.
[24] D. Loggia, D. Salin, and Yortsos, “The Effect of Dispersion on the Stability of Non-monotonic Mobility Profiles in Porous Media”, Physics of Fluids, volume 10, number 3, pp. 740-742, March 1998.
[25] M. C. Kim and C. K. Choi, “The Stability of Miscible Displacement in Porous Media: Nonmonotonic Viscosity Profile”, Physics of Fluids, volume 23, issue8, 084105, August 2011.
[26] A. Goriely and M. Tabor, “Self-Similar Tip Growth in Filamentary Organisms”, Physical Review Letters, volume 90, number 10, 108101, March, 2003.
[27] J. A. Miranda, “Shear-induced effects in confined non-Newtonian fluids under tension”, Physical Review E 69, 016311, January 2004.
[28] S. B. Gorell and G. M. Homsy, “A Theory of the Optimal Policy of Oil Recovery by Secondary Displacement Processes”, SIAM Journal on Applied Mathematics, volume 43, number 1, pp.79-98, February 1983.
[29] M. J. Shelley, F-R. Tian, and K. Wlodarski, “Hele-Shaw Flow and Pattern Formation in a Time-Dependent Gap“, Nonlinearity, volume 10, issue 6, pp.1471-1495, November 1997.
[30] E. Ben-Jacob, R. Godbey, N. D. Goldenfeld, J. Koplik, H. Levine, T. Mueller, and L. M. Sander, “Experimental Demonstration of the Role of Anisotropy in Interfacial Pattern Formation“, Physical Review Letters, volume 55, issue 12, pp.1315-1318, September 1985.
[31] S. Z. Zhang, E. Louis, O. Pla, and F. Guinea, “Linear Stability Analysis of the Hele-Shaw Cell with Lifting Plates”, The European Physical Journal B, volume 1, issue 1, pp.123-127, October 1998.
[32] A. Lindner, D. Derks, and M. J. Shelley, “Stretch Flow of Thin Layers of Newtonian Liquids: Fingering Patterns and Lifting Forces”, Physics of Fluids, volume 17, 072107, July 2005.
[33] J. A. Miranda, R. M. Oliveira, and P. J. David, “Adhesion Phenomena in Ferrofluids”, Physical Review E 70, p036311, September 2004.
[34] E. O. Dias and J. A. Miranda, “Control of Radial Fingering Patterns: A Weakly Nonlinear Approach”, Physical Review E 81, 016312, January 2010.
[35] A. Leshchiner, M. Thrasher, M. B. Mineev-Weinstein, and H. L. Swinney, “Harmonic Moment Dynamics in Laplacian Growth”, Physical Review E 81, 016206, January 2010.
[36] R. B. Bird, W. E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, New York, pp.150, 1960.
[37] G. Rousseaux, A. De Wit, and M. Martin, “Viscous Fingering in Packed Chromatographic Columns: Linear Stability Analysis”, Journal of Chromatography A, 1149, pp.254-273, March 2007.
[38] B. Gustafsson and A. Vasil’ev, “Conformal and Potential Analysis in Hele-Shaw Cells”, Birkhäuser Verlag, Switzerland, 2006.
[39] A. Rogerson and E. Meiburg, “Shear Stabilization of Miscible Displacement Processes in Porous Media”, Physics of Fluids A, volume 5, issue6, pp. 1344-1355, June 1993.
[40] E. Meiburg and C. Y. Chen, “High-Accuracy Implicit Finite Difference Simulations of Homogeneous and Heterogeneous Miscible-Porous-Medium-Flows”, Society of Petroleum Engineers Journal, volume 5, issue 2, pp.129-137, 2000.
[41] C. -Y. Chen, L. -L. Wang, and E. Meiburg, “Miscible Droplets in a Porous Medium and the Effects of Korteweg Stresses”, Physics of Fluids, volume 13, issue 9, pp.2447-2456, September, 2001.
[42] C. -Y. Chen, C. -H. Chen, and J. A. Miranda, “Numerical Study of Pattern Formation in Miscible Rotating Hele-Shaw Flows”, Physics Review E 73, 046306, April, 2006.
[43] H. H. Hu and D. D. Joseph, “Miscible Displacement in a Hele-Shaw Cell”, Zeitschrift fűr Angewandte Mathematik und Physik ZAMP, volume 43, issue 4, pp. 626-644, July 1992.
[44] Y. C Yortsos, “Stability of Displacement Processes in Porous Media in Radial Flow Geometries”, Physics of Fluids, volume 30, issue 10, pp. 2928.
[45] S. K. Lele, “Compact Finite Difference Schemes with Spectral-like Resolution”, Journal of Computer Physics, volume103, issue 1, pp. 16-42, 1992.
[46] Josselin G. de, Jong de, “Singularity Distributions for the Analysis of Multiple-fluid Flow through Porous Media”, Journal of Geophysical Research, volume 65, issue 11, pp. 3739-3758, November, 1960.
[47] C. -Y. Chen, Y. -S. Huang, and J. A. Miranda, “Difffuse-Interface Approach to Rotation Hele-Shaw Flows”, Physics Review E 84, 046302, April, 2011.
[48] J. A. Miranda and M. Widom, “Radial Fingering in a Hele-Shaw Cell: a weakly nonlinear analysis", Physica D, volume 120, issue 3-4, pp.315-328, September 1998.
[49] C. -Y. Chen, Y. -S. Huang, and J. A. Miranda, “Radial Hele-Shaw Flow with Suction: Fully Nonlinear Pattern Formulation”, Physics Review E 89, 053006, September, 2014.
[50] C. -Y. Chen and E. Meiburg, “Miscible Porous Media Displacements in the Quarter Five-Spot Configuration. Part 2. Effect of heterogeneities”, Journal of Fluid Mechanics, volume 371, pp. 269-299, September 1998.
[51] Ll. Carrillo, F. X.Magdaleno, J. Casademunt, and J. Ort´ın, “Experiments in a rotating Hele-Shaw cell”, Physical Review E 54, 6260, December 1996.
[52] E. Alvarez-Lacalle, J. Ort´ın, and J. Casademunt, “Low viscosity contrast fingering in a rotating Hele-Shaw cell “, Physics of Fluids, volume 16,number 4, pp. 908-924, April, 2004.
[53] E. Alvarez-Lacalle, J. Ort´ın, and J. Casademunt, “Relevance of Dynamic Wetting in Viscous Fingering Patterns”, Physical Review E 74, 025302, August 2006.
[54] R. Folch, E. Alvarez-Lacalle, J. Ort´ın, and J. Casademunt, “Pattern Formation and Interface Pinch-off in Rotating Hele-Shaw Flows: A Phase-Field Approach”, Physical Review E 80, 056305, November 2009.
[55] J. A. Miranda and E. Alvarez-Lacalle, “Viscosity contrast effects on fingering formation in rotating Hele-Shaw flows”, Physical Review E, 72, 026306, August, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top