跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 20:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王曉雯
研究生(外文):Wang, Hsiao-Wen
論文名稱:聚苯胺/還原石墨烯氧化物/奈米碳管三元複合電極材料應用於超級電容器之特性探討
論文名稱(外文):Polyaniline/Reduced Graphene Oxide/Carbon Nanotube Ternary Nanocomposite as Supercapacitor Electrode
指導教授:林智汶
指導教授(外文):Lin, Chi-Wen
口試委員:杜景順黃振家
口試委員(外文):DO, JING-SHANHUANG, CHEN-CHIA
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:超級電容器聚苯胺石墨烯氧化物還原氧化石墨烯羧酸化奈米碳管
外文關鍵詞:SupercapacitorPolyanilinegraphene oxidereduced graphene oxidecarboxylated carbon nanotubes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討以不同程序製備還原氧化石墨烯(RGO)/聚苯胺(PANI)/羧酸化奈米碳管(c-CNT)三元複合材料作為超級電容器之電極材料對電容性質之影響。不同製備程序分為以下三種:(1)先將氧化石墨烯(GO)還原為RGO,並與c-CNT預混合,再原位聚合PANI於RGO/c-CNT預混合物,稱之為二步驟合成法;(2)先原位聚合PANI於GO/c-CNT預混合物,再以化學還原法進行還原/去摻雜,及再摻雜,稱之為三步驟合成法A。上述程序(1)、(2)進行聚合反應時之混合方式又分為機械攪拌(mechanical stirring,MS)及超音波震盪(ultrasonic irradiation, UI),探討聚合反應時不同混合方式對複合電極材料的形態及比電容性質之影響。其中,苯胺(ANI)聚合的氧化劑為過硫酸銨(ammonium persulfate, APS),再摻雜劑為HCl;GO還原劑為NaBH4。由電子顯微鏡(SEM)觀察,顯示以超音波震盪方式製備複合電極材料,有利於控制聚苯胺之型態;由循環伏安測試(CV)結果顯示,不論是程序(1)或(2),皆以超音波震盪的方式進行原位聚合,其產物具有較佳的比電容值。

繼之,探討製備程序(3):首先以超音波法原位聚合PANI於GO,繼之進行GO還原/去摻雜,及PANI再摻雜,製得球狀的PANI/RGO複合材料(PA7RGO3-S),最後再添加c-CNT與之混合,稱之為三步驟合成法B。 先以表面電位儀(zeta potential analyzer)分析PA7RGO3-S與c-CNT在不同酸性水溶液(pH= 1, 3, 5)中之表面電位,發現PA7RGO3-S與c-CNT在pH=5條件下具有最大的表面電位差,可以達到較佳的分散性。遂以95wt% PA7RGO3-S與5 wt% c-CNT在pH=5的水溶液進行混合,發現其混和產物之比電容值亦最高。而將上述三種不同製備程序所得複合電極材料比較其比電容值,依序為(3)三步驟合成法B > (2)三步驟合成法A > (1)二步驟合成法。


最後,為了與組成比例相當,但採二步驟合成法之文獻[15]比較,本研究調節三元複材之組成重量比例為PANI:RGO:c-CNT = 85:14.85:0.15,並以相同參數及使用程序(3)三步驟合成法B製備三元複材。CV測試結果,以程序(3)製備之PANI/RGO/c-CNT三元複材於高掃描速率下之比電容值優於文獻值,且經一千次循環壽命測試後,比電容值幾乎沒有衰退,維持率優於文獻[15]三元複材的94%。

The aim of this study is to investigate the effect of preparation procedures on the Polyaniline (PANI)/Reduced Graphene Oxide (RGO)/Carbon Nanotube (c-CNT) Ternary Nanocomposite as Supercapacitor Electrode.
The processes respectively are : (1)Two step synthesis method:First, reduced GO into RGO and mixed with c-CNT. Then in-situ polymerization of PANI on the surface of RGO/c-CNT.:(2)Three step synthesis method A:First, in-situ polymerization of PANI on the surface of GO/c-CNT then reduction/de-doping and re-doping.
Process (1) and (2) are study the mixing method of polymerization effect of electrode material. The mixing methods are mechanical stirring (MS) and ultrasonic irradiation (UI). The oxidant of aniline (ANI) is ammonium persulfate (APS);re-dopant is HCl;The reducing agent of GO is NaBH4. The mixing method used MS can control shape of polyaniline. From Cyclic voltammetry test, the products used process (1) and (2) have better capacitance value.
Then study the process (3) Three step synthesis method B:First, in-situ polymerization of PANI on the surface of GO that used MS then reduction/de-doping and re-doping to obtain PA7RGO3-S. At last add the c-CNT.
Use the zeta potential analyzer to analysis the zeta potential of PA7RGO3-S and c-CNT that in aqueous solution of different pH value (pH=1, 3, 5). PA7RGO3-S and c-CNT are in aqueous solution with pH=5 there are large surface potential difference. Compare of different processes, the Three step synthesis method B have better capacitance value with PA7RGO3-S and c-CNT are 95:5wt%.
By the cyclic voltammetry, three different processes of polyaniline/reduced graphene oxide of the electrochemically active area and specific capacitance values are significantly different, order (3) Three step synthesis method B > (2) Three step synthesis method A >Process(1) Two step synthesis method.
Final, used composition is (PANI/RGO/c-CNT=85:14.85:0.15 wt %) from literature [15] to prepare PANI/RGO/c-CNT. Then compare of capacitance value that Three step synthesis method B have better capacitance value and cycle test (104%) than literature [15].

摘要 i
ABSTRACT iii
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 15
1.1 前言 15
1.2 超級電容器簡介 16
1.3 超級電容器的儲能機制及工作原理 18
1.3.1 電雙層電容器(Electric Double Layer Capacitor, EDLC) 19
1.3.2 擬電容器(Pseudo-capacitor) 21
1.4 超級電容器電極材料 22
1.4.1 碳材料 22
1.4.2 金屬氧化物 24
1.4.3 導電性高分子 24
第二章 文獻回顧 26
2.1 聚苯胺/石墨烯(石墨烯氧化物)複合物於超級電容器電極材料之應用 26
2.2 聚苯胺/石墨烯/奈米碳管 32
2.3 材料於水溶液中之分散性 37
2.3.1 奈米碳管表面官能基化 37
2.3.2 水溶液pH值對分散性之影響 40
2.4 研究動機 44

第三章 原理 45
3.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 45
3.2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 45
3.3 傅立葉紅外線吸收光譜儀(Fourier Transform, FTIR) 45
3.4 循環伏安法(Cyclic voltammetry, CV) [9] 46
3.5 定電流充放電(Chronopotentiometry, CP) [35] 46
3.6 電化學阻抗圖譜(Electrochemical Impedance Spectroscopy, EIS) [36] 47
3.7 粒徑與界面電位分析儀(Particle Size and Zeta Potential Analyzer ) [21] 47
第四章 實驗方法 48
4.1 實驗藥品 48
4.2 實驗儀器 49
4.3 石墨烯氧化物(graphene oxide,GO)製備[37] 50
4.4 羧酸化奈米碳管(c-CNT)製備[38] 50
4.5 聚苯胺/石墨烯球狀複合材料(PA7RGO3-S)製備[13] 51
4.6 聚苯胺/石墨烯/羧酸化奈米碳管複合材料製備 51
4.7 電極的製備 53
4.8 電化學性能檢測分析 54
4.8.1 循環伏安分析 54
4.8.2 定電流充放電分析 54
4.8.3 交流阻抗分析 54
4.9 材料形貌鑑定與性質分析 55
4.9.1 掃描式電子顯微鏡(SEM) 55
4.9.2 穿透式電子顯微鏡(TEM) 55
4.9.3 傅立葉轉換紅外線分析(FTIR) 55
4.9.4 表面電位分析 55
4.9.5 導電度分析 55
第五章 結果與討論 56
5.1 奈米碳管官能基化 56
5.1.1傅立葉紅外線光譜儀(FTIR) 分析 56
5.1.2導電度測試 58
5.1.3水中分散性測試 59
5.2 聚苯胺/石墨烯球狀二元複材(PA7RGO3-S) 60
5.2.1 SEM形貌鑑定 60
5.2.2循環伏安測試 63
5.3 PANI/RGO/c-CNT三元複材之電化學性質 65
5.3.1 二步驟合成法之循環伏安測試 65
5.3.2 三步驟合成法A之循環伏安測試 67
5.4 聚合反應之混合方式對三元複材形貌的影響 69
5.4.1 二步驟合成法SEM形貌鑑定 69
5.4.2 以三步驟合成法A製備PANI/RGO/c-CNT之形貌鑑定 70
5.5 三步驟合成法B製備三元材 71
5.5.1 不同pH值下PA7RGO3-S及c-CNT分散性觀察 71
5.5.2 表面電位(zeta potential)分析 72
5.5.3 循環伏安測試 73
5.5.4 TEM形貌 75
5.5不同製程製備三元複材以及二元複材之電化學測試 77
5.5.1循環伏安法測試 77
5.5.2循環壽命測試 79
5.5.3定電流充放電測試 81
5.5.4能量密度與功率密度 82
5.6 三種不同製備程序製備三元複材之SEM形貌比較 83
5.7三步驟合成法B之三元複材電化學性質與文獻值比較 85
結論 88
參考文獻 89

[1]M. Jayalakshmi and K. Balasubramanian, "Simple capacitors to supercapacitors-an overview," Int. J. Electrochem. Sci, vol. 3, pp. 1196-1217, 2008.
[2]B. Conway and W. Pell, "Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices," Journal of Solid State Electrochemistry, vol. 7, pp. 637-644, 2003.
[3]Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, et al., "Progress of electrochemical capacitor electrode materials: A review," International journal of hydrogen energy, vol. 34, pp. 4889-4899, 2009.
[4]A. Pandolfo and A. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of power sources, vol. 157, pp. 11-27, 2006.
[5]K.-L. Yang, and S.Yiacoumi, " Electrical Double-Layer Formation, " Dekker Encyclopedia of Nanoscience and Nanotechnology, pp. 1001-1014, 2004.
[6]陳永真,李錦, "電容器手冊" 科學出版社, 2008.
[7]D. Qu and H. Shi, "Studies of activated carbons used in double-layer capacitors," Journal of Power Sources, vol. 74, pp. 99-107, 1998.
[8]http://www.twwiki.com/wiki/%E8%B6%85%E7%B4%9A%E9%9B%BB%E5%AE%B9#3
[9]J. Yan, T. Wei, Z. Fan., W. Qian,M. Zhang, X. Shen, F. Wei, "Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors," Journal of Power Sources, vol. 195, pp. 3041-3045, 2010.
[10]周建新, 沈湘黔等, "超级電容器電擊材料研究進展, " 2004.
[11]J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature nanotechnology, vol. 3, pp. 206-209, 2008.
[12]C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321, pp. 385-388, 2008.
[13]Y. F. Huang and C. W. Lin, "Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process," Polymer, vol. 53, pp. 2574-2582, 2012.
[14]Z.-X Chen, and H.-B Lu, "Overview of Graphene/Polyaniline Composite for High-performance Supercapacitor," Chemical Journal of Chinese Universities, vol. 34, pp. 2020-2033, 2013.
[15]J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, et al., "Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors," Journal of Power Sources, vol. 195, pp. 3041-3045, 2010.
[16]X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, et al., "Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film," Electrochimica Acta, vol. 56, pp. 9224-9232, 2011.
[17]D. Li and R. B. Kaner, "Processable stabilizer-free polyaniline nanofiber aqueous colloids," Chemical communications, pp. 3286-3288, 2005.
[18]Y. Wang, X. N. Guan, C.-Y. Wu, M.-T. Chen, H.-H. Hsieh, H. D. Tran, et al., "Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes," Polymer Chemistry, vol. 4, pp. 4814-4820, 2013.
[19]S.-Z. Kang, D.-e. Yin, X. Li, and J. Mu, "A facile preparation of multiwalled carbon nanotubes modified with hydroxyl groups and their high dispersibility in ethanol," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 384, pp. 363-367, 2011.
[20]L.-X. Li, and F. Li, " The effect of carbonyl, carboxyl and hydroxyl groups onthe capacitance of carbon nanotubes," New Carbon Materials, vol. 26, pp. 224-228, 2011.
[21]林士軒, "石墨烯包覆聚苯胺奈米纖維複合材料應用於超級電容器之研究-pH值控制對電極材料性質之影響" 化學工程與材料工程研究所, 國立雲林科技大學, 2014.
[22]柯鑌鴻, "聚苯胺/石墨烯複合電極材料應用於超級電容器之研究-形態控制與製備程序對電極材料性質之影響" 化學工程與材料工程研究所, 國立雲林科技大學, 2014.
[23]劉梅根, "電化學電容器電極材料研究" 中國科學技術大學出版社, 2009.
[24]C. Daubeny, "III.-Supplementary note to a memoir on the power ascribed to the roots of plants of rejecting poisonous or abnormal substances presented to them," Journal of the Chemical Society, vol. 15, pp. 16-17, 1862.
[25]A. G. Green and A. E. Woodhead, "CCXLIII.-Aniline-black and allied compounds. Part I," Journal of the Chemical Society, Transactions, vol. 97, pp. 2388-2403, 1910.
[26]A. G. Macdiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, "Proceedings of the International Conference of Science and Technology of Synthetic Metals Polyaniline: a new concept in conducting polymers," Synthetic Metals, vol. 18, pp. 285-290, 1987/02/01 1987.
[27]K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, "Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes," Chemistry of Materials, vol. 22, pp. 1392-1401, 2010/02/23 2010.
[28]X. Dong, J. Wang, J. Wang, M. B. Chan-Park, X. Li, L. Wang, et al., "Supercapacitor electrode based on three-dimensional graphene–polyaniline hybrid," Materials Chemistry and Physics, vol. 134, pp. 576-580, 6/15/ 2012.
[29]S. Tsang, Y. Chen, P. Harris, and M. Green, "A simple chemical method of opening and filling carbon nanotubes," Nature, vol. 372, pp. 159-162, 1994.
[30]R. M. Lago, S. C. Tsang, K. L. Lu, Y. K. Chen, and M. L. H. Green, "Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups," Journal of the Chemical Society, Chemical Communications, pp. 1355-1356, 1995.
[31]H. Hiura, T. W. Ebbesen, and K. Tanigaki, "Opening and purification of carbon nanotubes in high yields," Advanced Materials, vol. 7, pp. 275-276, 1995.
[32]魏向辰, "導電高分子與多層奈米碳管複合材料之研究" 化學工程與材料工程研究所, 國立中央大學, 2007.
[33]羅聖全, "研發奈米科技的基本工具之一電子顯微鏡介紹-SEM," 小奈米大世界, 2004.
[34]羅聖全, "研發奈米科技的基本工具之一電子顯微鏡介紹-TEM," 小奈米大世界, 2004.
[35]L. Mao, K. Zhang, H. S. O. Chan, and J. Wu, "Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode," Journal of Materials Chemistry, vol. 22, pp. 80-85, 2012.
[36]X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, et al., "Direct synthesis of RGO/Cu 2 O composite films on Cu foil for supercapacitors," Journal of Alloys and Compounds, vol. 586, pp. 745-753, 2014.
[37]盧易生, "以石墨烯氧化物改質質子交換膜之研究" 化學工程與材料工程研究所, 國立雲林科技大學, 2012.
[38]莊宴惠, "奈米碳管表面改質與複合材料合成之電性和導熱性量測"航空工程研究所, 國立成功大學, 2007.
[39]H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, "A nanostructured graphene/polyaniline hybrid material for supercapacitors," Nanoscale, vol. 2, pp. 2164-2170, 2010.
[40]I. Mazov, V. L. Kuznetsov, I. A. Simonova, A. I. Stadnichenko, A. V. Ishchenko, A. I. Romanenko, et al., "Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology," Applied Surface Science, vol. 258, pp. 6272-6280, 2012.
[41]劉佳宜, "導電聚胺酯及其奈米複合材料的製備與性質研究"工程科技研究所博士班, 國立雲林科技大學, 2006.
[42]J. Kim, S.-J. Park, and S. Kim, "Capacitance behaviors of polyaniline/graphene nanosheet composites prepared by aniline chemical polymerization," Carbon letters, vol. 14, pp. 51-54, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊