|
陳韋成, 丁肇隆, 張瑞益(2016)。營建工地安全系統之工地安全帽及背心偵測。資訊、科技與社會學報,頁 65-77。 勞動部職業安全衛生署(民107)。中華民國 106 年勞動檢查年報。 新北市:勞動部職業安全衛生署。 Abramovich, F., & Pensky, M. (2015). Classification with many classes: challenges and pluses. eprint arXiv:1506.01567, arXiv:1506.01567. Barro-Torres, S., Fernández-Caramés, T. M., Pérez-Iglesias, H. J., & Escudero, C. J. (2012). Real-time personal protective equipment monitoring system. Computer Communications, 36(1), 42-50. doi: 10.1016/j.comcom.2012.01.005 Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. eprint arXiv:1602.00763, arXiv:1602.00763. Ding, L., Fang, W., Luo, H., Love, P. E. D., Zhong, B., & Ouyang, X. (2018). A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory. Automation in Construction, 86, 118-124. doi: 10.1016/j.autcon.2017.11.002 Dong, S., He, Q., Li, H., & Yin, Q. (2015). Automated PPE misuse identification and assessment for safety performance enhancement. Paper presented at the Iccrem 2015, Luleå, Sweden. Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., & Li, C. (2018). Computer vision aided inspection on falling prevention measures for steeplejacks in an aerial environment. Automation in Construction, 93, 148-164. doi: 10.1016/j.autcon.2018.05.022 Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Rose, T. M., & An, W. (2018). Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Automation in Construction, 85, 1-9. doi: 10.1016/j.autcon.2017.09.018 Fang, Q., Li, H., Luo, X., Ding, L., Rose, T. M., An, W., & Yu, Y. (2018). A deep learning-based method for detecting non-certified work on construction sites. Advanced Engineering Informatics, 35, 56-68. doi: 10.1016/j.aei.2018.01.001 Fang, W., Ding, L., Luo, H., & Love, P. E. D. (2018). Falls from heights: A computer vision-based approach for safety harness detection. Automation in Construction, 91, 53-61. doi: 10.1016/j.autcon.2018.02.018 Fang, W., Ding, L., Zhong, B., Love, P. E. D., & Luo, H. (2018). Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach. Advanced Engineering Informatics, 37, 139-149. doi: 10.1016/j.aei.2018.05.003 Fang, W., Zhong, B., Zhao, N., Love, P. E. D., Luo, H., Xue, J., & Xu, S. (2019). A deep learning-based approach for mitigating falls from height with computer vision: Convolutional neural network. Advanced Engineering Informatics, 39, 170-177. doi: 10.1016/j.aei.2018.12.005 Girshick, R. (2015). Fast R-CNN. eprint arXiv:1504.08083, arXiv:1504.08083. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2013). Rich feature hierarchies for accurate object detection and semantic segmentation. eprint arXiv:1311.2524, arXiv:1311.2524. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. eprint arXiv:1512.03385, arXiv:1512.03385. Hu, G. X., Yang, Z., Hu, L., Huang, L., & Han, J. M. (2018). Small object detection with multiscale features. International Journal of Digital Multimedia Broadcasting, 2018, 1-10. doi: 10.1155/2018/4546896 Huang, X., & Hinze, J. (2003). Analysis of construction worker fall accidents. Journal of Construction Engineering and Management, 129(3), 262-271. doi: 10.1061/(asce)0733-9364(2003)129:3(262) Kelm, A., Laußat, L., Meins-Becker, A., Platz, D., Khazaee, M. J., Costin, A. M., Helmus, M., Teizer, J. (2013). Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites. Automation in Construction, 36, 38-52. doi: 10.1016/j.autcon.2013.08.009 Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Paper presented at the Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe, Nevada. Li, K., Zhao, X., Bian, J., & Tan, M. (2018). Automatic safety helmet wearing detection. eprint arXiv:1802.00264, arXiv:1802.00264. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2016). Feature pyramid networks for object detection. eprint arXiv:1612.03144, arXiv:1612.03144. Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. eprint arXiv:1708.02002, arXiv:1708.02002. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2015). SSD: Single Shot MultiBox Detector. eprint arXiv:1512.02325, arXiv:1512.02325. doi: 10.1007/978-3-319-46448-0_2 Lombardi, D. A., Verma, S., Brennan, M. J., & Perry, M. J. (2009). Factors influencing worker use of personal protective eyewear. Accident; analysis and prevention, 41(4), 755-762. Mneymneh, B. E., Abbas, M., & Khoury, H. (2017). Automated hardhat detection for construction safety applications. Procedia Engineering, 196, 895-902. doi: 10.1016/j.proeng.2017.08.022 Mneymneh, B. E., Abbas, M., & Khoury, H. (2019). Vision-based framework for intelligent monitoring of hardhat wearing on construction sites. Journal of Computing in Civil Engineering, 33(2), 04018066. doi: 10.1061/(asce)cp.1943-5487.0000813 Park, M.-W., Elsafty, N., & Zhu, Z. (2015). Hardhat-wearing detection for enhancing on-site safety of construction workers. Journal of Construction Engineering and Management, 141(9), 04015024. doi: 10.1061/(asce)co.1943-7862.0000974 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You only look once: unified, real-time object detection. eprint arXiv:1506.02640, arXiv:1506.02640. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. eprint arXiv:1506.01497, arXiv:1506.01497. Roberts, D., Bretl, T., & Golparvar-Fard, M. (2017). Detecting and classifying cranes using camera-equipped UAVs for monitoring crane-related safety hazards. Computing in Civil Engineering 2017, 442-449. doi: doi:10.1061/9780784480847.055 Rubaiyat, A. H. M., Toma, T. T., Kalantari-Khandani, M., Rahman, S. A., Chen, L., Ye, Y., & Pan, C. S. (2016, 13-16 Oct. 2016). Automatic detection of helmet uses for construction safety. Paper presented at the 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW). Seo, J., Han, S., Lee, S., & Kim, H. (2015). Computer vision techniques for construction safety and health monitoring. Advanced Engineering Informatics, 29(2), 239-251. doi: 10.1016/j.aei.2015.02.001 Seong, H., Choi, H., Cho, H., Lee, S., Son, H., & Kim, C. (2017). Vision-based safety vest detection in a construction scene. Paper presented at the Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC), Taipei, Taiwan. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. eprint arXiv:1409.1556, arXiv:1409.1556. doi: 10.1.1.740.6937 Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017). Revisiting unreasonable effectiveness of data in deep learning era. eprint arXiv:1707.02968, arXiv:1707.02968. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, Inception-ResNet and the impact of residual connections on learning. eprint arXiv:1602.07261, arXiv:1602.07261. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2014). Going deeper with convolutions. eprint arXiv:1409.4842, eprint arXiv:1409.4842. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the inception architecture for computer vision. eprint arXiv:1512.00567, arXiv:1512.00567. Wu, H., & Zhao, J. (2018). An intelligent vision-based approach for helmet identification for work safety. Computers in Industry, 100, 267-277. doi: 10.1016/j.compind.2018.03.037 Wu, J., Geyer, C., & Rehg, J. M. (2011, 9-13 May 2011). Real-time human detection using contour cues. Paper presented at the 2011 IEEE International Conference on Robotics and Automation. Zalewski, E. (2004). Enforcing PPE use. Occupational health & safety, 73 2, 66, 89. Zhang, H., Yan, X., Li, H., Jin, R., & Fu, H. (2019). Real-time alarming, monitoring, and locating for non-hard-hat use in construction. Journal of Construction Engineering and Management, 145(3), 04019006. doi: 10.1061/(asce)co.1943-7862.0001629
|