跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張純潔
研究生(外文):Ellice Jane J. Tiu
論文名稱:急診室辨識急性冠狀動脈症候群病患工具之開發-以邏輯斯迴歸評估模型適用性
論文名稱(外文):Development of ED Triage Tool for Acute Coronary Syndrome (ACS) – Assessing the Use of Logistic Regression for Model Development
指導教授:林瑞豐林瑞豐引用關係
指導教授(外文):Ray F. Lin
口試委員:李捷蔡光超
口試委員(外文):Chieh LeeKuang-Chau Tsai
口試日期:2019-07-08
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:132
中文關鍵詞:急性冠狀動脈症候群 (ACS)分診急診室觀察股邏輯回歸
外文關鍵詞:Acute Coronary Syndrome (ACS)TriageEmergency Department (ED)Observation Unit (OU)Logistic Regression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
急診室的急性冠狀動脈症候群(ACS)患者管理是一項具有挑戰性的任務,因為大多數患者沒有提供這種病症的明確證據。這導致難以識別在觀察單位(OU)中應該優先進行徹底診斷並且能夠安全地在常規ED隊列中等待的患者。本研究旨在驗證和使用邏輯回歸作為開發一套分類標準的方法,該標準可以識別出現ACS時風險相當大或可忽略不計的患者。同時,評估為通過救護車(119)或自我到達患者到達的患者提供單獨的分診模型的有效性。邏輯回歸的驗證是通過先前由Tsai等人開發的ACS分類工具的實施來完成的。 Tsai, et al.(2018)在新數據集上並將其一致性與先前公佈的結果進行比較。由於ACS分診工具以前使用的患者數據並不真正代表急診室人群,因此使用邏輯回歸法開發了一個使用更有效數據集的新模型,同時醫生決定將分類作為預測的依據。通過將其與使用較大訓練數據集制定的其他邏輯回歸模型進行比較以及基於ACS放電診斷的預測來驗證該新開發的模型。還開發了通過救護車和自我運輸到達的患者的個體邏輯回歸模型,並與一般模型進行了比較。事實證明,ACS分類工具具有一致的結果,其公佈的結果表明邏輯回歸是模型開發的可靠方法。使用更具包容性的患者數據集的新邏輯回歸模型由6個重要預測因子組成,表示為:Odds Ratio = - 4.566+ 1.056#westeur024#Age + 0.778#westeur024#Male + 2.24#westeur024#Chest Discomfort + 1.365#westeur024#Shock + 0.805#westeur024#Proximal Radiation Pain -1.308#westeur024#Arrhythmia 概率(ACS懷疑)的閾值為0.13。對於分類ACS病例,這表現出95%靈敏度,13%特異性和65%以下面積的表現,優於其他6個測試模型(Chest Pain Strategy, Triage Flowchart, Zarich’s Strategy, HBI Checklist and Modified HBI Checklist 1&2)。此外,邏輯回歸模型證明足夠隨著訓練數據集增加的開發模型和基於ACS放電診斷的模型沒有顯著改善(p> 0.05)。同時,針對通過特定到達模式(自我到達和救護車/ 119)到達的患者的專用分診模型預計在性能改善方面具有良好潛力。目前的結果必須謹慎進行,因為通過救護車到達的患者現有少量數據(119)。因此,對於119名患者進行模型開發的進一步數據收集被認為是有益的。預計這將提高模型的可靠性,並開發具有增強的分類功能的專用119分類模型。
Acute Coronary Syndrome (ACS) patient management in the Emergency Department (ED) is known to be a challenging task as majority of patients do not present clear-cut evidence of this condition. This leads to difficulty in identifying patients who should be prioritized for thorough diagnoses in the Observation Unit (OU) and who can safely wait in the regular ED queue. This study aimed to validate and use Logistic Regression as the method for developing a set of triaging criteria which can identify patients with considerable or negligible risk of ACS upon presentation. At the same time, evaluate the effectiveness of having a separate triage model for patients arriving via ambulance (119) or self-arrival patients. Validation for Logistic Regression was done through the implementation of the ACS Triage Tool, previously developed by Tsai et al. (2018), on a new dataset and compared its consistency with the previously published result. Since the ACS Triage Tool previously utilized patient data which was not truly representative of the ED population, a new model using a more valid dataset was developed using Logistic Regression along with physician’s decision for triaging as basis for prediction. Validation of this newly developed model was done through comparing it with other Logistic Regression models formulated with a larger training dataset as well as prediction based on ACS discharge diagnosis. Individual Logistic Regression models for patients arriving via ambulance and self-transportation were also developed and compared with the general model. The ACS Triage Tool proved to have consistent results with its published results indicating that Logistic Regression is a reliable method for model development. The new Logistic Regression model which used a more inclusive set of patient data was comprised of 6 significant predictors and expressed as: Odds Ratio = - 4.566+ 1.056#westeur024#Age + 0.778#westeur024#Male + 2.24#westeur024#Chest Discomfort + 1.365#westeur024#Shock + 0.805#westeur024#Proximal Radiation Pain -1.308#westeur024#Arrhythmia with threshold value of 0.13 for Probability (ACS suspicion). This yielded a performance of 95% sensitivity, 13% specificity, and Area Under Curve of 65% for triaging ACS cases which were superior than other 6 models tested (Chest Pain Strategy, Triage Flowchart, Zarich’s Strategy, HBI Checklist and Modified HBI Checklist 1&2). Furthermore, the logistic regression model proved to be sufficient as developed models with increased training dataset and ACS discharge diagnosis-based model did not result to significant improvements (p>0.05). Meanwhile, a dedicated triage model for patients arriving via a specific mode-of-arrival (self-arrival and ambulance/119) is projected to have good potential in performance improvement. Current results have to be proceeded with caution due to the small amount of data available on-hand for patients arriving via ambulance (119). Therefore, further collection of data for 119 patients for model development is seen to be beneficial. This is foreseen to improve the reliability of the model and develop a dedicated 119 triage model with enhanced triaging capabilities.
Acknowledgements ii
Abstract iii
List of Figures ix
List of Tables xi
Chapter 1: Introduction 1
1.1 Background and Motivation of the Study 1
1.2 Research Objectives 5
1.3 Research Limitations 7
1.4 Research Structure 8
Chapter 2: Review of Related Literature 10
2.1 Introduction of Acute Coronary Syndrome (ACS) 10
2.2 Medical Diagnosis of ACS 11
2.2.1 Current Practice 11
2.2.2 Limitations of current medical evaluation 13
2.3 Current Risk Scoring Systems 13
2.3.1 HEART Risk Score 14
2.3.2 North American Chest Pain Rule (NACPR) 15
2.3.3 Emergency Department Assessment of Chest Pain Score - Accelerated Diagnostic Protocol (EDACS - ADP) 16
2.3.4 Limitation of Current Risk Scoring Systems 17
2.4 Symptoms and Risk Factors of ACS 18
2.4.1 Symptoms of ACS 18
2.4.2 Risk Factors of ACS 19
2.4.3 Studies for predicting ACS occurrence 22
2.4.4 Synthesis and Limitations of current studies 24
2.5 Current Triage Models 27
2.5.1 Chest Pain Strategy 27
2.5.2 Zarich’s strategy 28
2.5.3 Triage Flowchart 28
2.5.4 Heart Broken Index (HBI) 29
2.5.5 ACS Triage Model 30
2.5.6 Modified HBI Checklist 31
2.5.7 Comparison of current triage models 32
2.6 Methods for Model Development 35
2.6.1 Logistic Regression 35
2.6.2 Signal Detection Theory 36
2.6.3 Receiver Operating Curve (ROC) 37
Chapter 3: Methodology 39
3.1 Determination of Conditions for Data Collection 40
3.2 Data Collection and Cleaning 43
3.3 Validation of ACS Triage Tool 45
3.4 Logistic Regression Model Development 45
3.4.1 Split Data 48
3.4.3 Adjust Threshold 50
3.5 Testing of Other Models 52
3.5.1 Chest Pain Strategy 52
3.5.2 Zarich’s Strategy 52
3.5.3 Triage Flowchart 52
3.5.4 Heart Broken Index (HBI) 53
3.5.5 Modified HBI Checklist 54
3.6 Performance Evaluation on Corresponding Test Data 55
3.6.1 Proportions of Test Data Used 56
3.6.2 Models with Corresponding Test Data 56
3.6.3 Performance Measures 57
3.7 Comparison and Analysis 58
3.7.1 Model Validation of Existing Model (ACS Triage Tool) 61
3.7.2 Logistic Regression Models’ Performance Validation 62
3.7.3 Increase in Logistic Regression Model’s Training Dataset Validation 64
3.7.4 Mode of Arrival-specific Logistic Regression Model Validation 64
3.7.5 Discharge Diagnosis based Training Model 65
Chapter 4: Results 67
4.1 Data Characteristics 67
4.1.1 Overall Data Characteristics 67
4.1.2 Data Characteristics Based on Admission to Observation Unit (OU) and ACS Diagnosis 68
4.1.3 Current Performance of ED Triage 69
4.1.4 Data Characteristics based on Patient’s Mode of Arrival 70
4.2 Validation of Existing Model (ACS Triage Tool) 72
4.2.1 Comparison of Published Result and Newly Tested Data 72
4.2.2 Consistent Prediction of ACS and OU Cases 74
4.3.1 Building the Logistic Regression Models 75
4.3.2 Threshold Adjustment 82
4.4 Logistic Regression Model (Stage 2, OU) Performance Validation 85
4.4.1 LR2 (OU) Model Comparison with ACS Triage Tool 85
4.4.2 Consistent Prediction of ACS and OU cases 88
4.4.3 Stage 2 Logistic Regression Model Performance Comparison with Other Models 89
4.5 Increased Training Dataset for Logistic Regression Model Validation 95
4.5.1 ACS Prediction 96
4.5.2 OU Prediction 97
4.6 Mode of Arrival-specific Logistic Regression Model Validation 98
4.6.1 Self-arrival and General Logistic Regression Model Comparison 98
4.6.2 Ambulance (119) and General Logistic Regression Model Comparison 101
4.7 Discharge Diagnosis based Logistic Regression Model 104
Chapter 5: Discussion 108
5.1 Validation of Existing Model (ACS Triage Tool) 108
5.2 Evaluation of the Logistic Regression Model 109
5.2.1 Predictors in the Newly Developed Model 110
5.2.2 Evaluation of Logistic Regression Model’s Performance with Other Triage Models 111
5.3 Validation of the Logistic Regression Model’s Sufficiency 114
5.3.1 Effect of Increasing Data for Model Development 114
5.3.2 Comparison of Discharge Diagnosis-based and Physician’s Judgement-based Model 115
5.4 Assessment of Patient’s Mode of Arrival-specific Models 116
Chapter 6: Conclusion 118
References 119
Appendix 127
Appendix A. Existing Models’ Performance on Stage 3 (ACS), 5 Replications 127
Appendix B. Logistic Regression Models’ Performance on Stage 3 (ACS), 5 Replications 127
Appendix C. Other Models’ Performance on Stage 3 (ACS), 5 Replications 128
Appendix D. Logistic Regression Models’ Performance on Stage 3 119 (ACS), 3 Replications 129
Appendix E. Logistic Regression Models’ Performance on Stage 3 self-arrival (ACS), 5 Replications 129
Appendix F. Existing Models’ Performance on Stage 3 (OU), 5 Replications 130
Appendix G. Logistic Regression Models’ Performance on Stage 3 (OU), 5 Replications 130
Appendix H. Other Models’ Performance on Stage 3 (OU), 5 Replications 131
Appendix I. Logistic Regression Models’ Performance on Stage 3 119 (OU), 3 Replications 132
Appendix J. Logistic Regression Models’ Performance on Stage 3 self-arrival (OU), 5 Replications 132
Abdi, Herv#westeur042#. (2007). Signal detection theory (SDT). Encyclopedia of measurement and statistics, 886-889.
Abu-Assi, Emad ; Lopez-Lopez, Andrea; Gonzalez-Salvado, Violeta; Redondo-Dieguez, Alfredo ; Pena-Gil, Carlos ; Bouzas-Cruz, Noelia ; Raposeiras-Roubin, Sergio ; Riziq-Yousef Abumuaileq, Rami ; Garcia-Acuna, Jose M. & Gonza´ lez-Juanatey, Jose R. . (2016). The Risk of Cardiovascular Events After an Acute Coronary Event Remains High, Especially During the First Year, Despite Revascularization. Revista Espa#westeur050#ola de Cardiolog#westeur046#a, 8.
Achar, Suraj A.; Kundu, Suriti & Norcross, William A. (2005). Diagnosis of Acute Coronary Syndrome. American Family Physician, 72, 8.
Akinkuolie, Akintunde O. & Mora, Samia. (2013). Are there sex differences in acute coronary syndrome presentation?: a guide through the maze. JAMA internal medicine, 173(20), 1861-1862. doi:10.1001/jamainternmed.2013.8075
Almas, Aysha; Parkash, Om; Hameed, Aamir & Islam, Muhammad. (2010). Emergency Evaluation of Acute Chest Pain. Journal of the College of Physicians and Surgeons Pakistan, 20, 74-78.
American Heart Association. (2015). Acute Coronary Syndrome. Heart.org. Retrieved from http://www.heart.org/en/health-topics/heart-attack/about-heart-attacks/acute-coronary-syndrome
Amsterdam, E. A.; Wenger, N. K.; Brindis, R. G.; Casey, D. E., Jr.; Ganiats, T. G.; Holmes, D. R., Jr.; Jaffe, A. S.; Jneid, H.; Kelly, R. F.; Kontos, M. C.; Levine, G. N.; Liebson, P. R.; Mukherjee, D.; Peterson, E. D.; Sabatine, M. S.; Smalling, R. W. & Zieman, S. J. (2014). 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 64(24), e139-e228. doi:10.1016/j.jacc.2014.09.017
Amsterdam, Ezra A.; Kirk, J. Douglas; Bluemke, David A.; Diercks, Deborah; Farkouh, Michael E.; Garvey, J. Lee; Kontos, Michael C.; McCord, James; Miller, Todd D.; Morise, Anthony; Newby, L. Kristin; Ruberg, Frederick L.; Scordo, Kristine Anne; Thompson, Paul D.; American Heart Association Exercise, Cardiac Rehabilitation; Prevention Committee of the Council on Clinical Cardiology, Council on Cardiovascular Nursing; Interdisciplinary Council on Quality of, Care & Outcomes, Research. (2010). Testing of low-risk patients presenting to the emergency department with chest pain: a scientific statement from the American Heart Association. Circulation, 122(17), 1756-1776. doi:10.1161/CIR.0b013e3181ec61df
Anderson, JL; Adams, CD; Antman, EM; Bridges, CR; Califf, RM; Casey, DE Jr; Chavey, WE 2nd; Fesmire, FM; Hochman, JS; Levin, TN; Lincoff, AM; Peterson, ED; Theroux, P; Wenger, NK; Wright, RS; Smith, SC Jr; Jacobs, AK; Halperin, JL; Hunt, SA & Krumholz, HM. (2008). ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, e148–e304.
Antman, E. M.; Anbe, D. T.; Armstrong, P. W.; Bates, E. R.; Green, L. A.; Hand, M.; Hochman, J. S.; Krumholz, H. M.; Kushner, F. G.; Lamas, G. A.; Mullany, C. J.; Ornato, J. P.; Pearle, D. L.; Sloan, M. A.; Smith, S. C., Jr.; Alpert, J. S.; Anderson, J. L.; Faxon, D. P.; Fuster, V.; Gibbons, R. J.; Gregoratos, G.; Halperin, J. L.; Hiratzka, L. F.; Hunt, S. A. & Jacobs, A. K. (2004). ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation, 110(9), e82-292.
Arnett, D. K.; Blumenthal, R. S.; Albert, M. A.; Buroker, A. B.; Goldberger, Z. D.; Hahn, E. J.; Himmelfarb, C. D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J. W.; Michos, E. D.; Miedema, M. D.; Munoz, D.; Smith, S. C., Jr.; Virani, S. S.; Williams, K. A., Sr.; Yeboah, J. & Ziaeian, B. (2019). 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. Circulation, CIR0000000000000678. doi:10.1161/CIR.0000000000000678
Austin, P. C. & Steyerberg, E. W. (2017). Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res, 26(2), 796-808. doi:10.1177/0962280214558972
Backus, B. E.; Six, A. J.; Kelder, J. H.; Gibler, W. B.; Moll, F. L. & Doevendans, P. A. (2011). Risk scores for patients with chest pain: evaluation in the emergency department. Curr Cardiol Rev, 7(1), 2-8. doi:10.2174/157340311795677662
Backus, B.E.; Six, A.J.; Kelder, J.C.; Bosschaert, M.A.R.; Mast, E.G.; Mosterd, A.; Veldkamp, R.F.; Wardeh, A.J.; Tio, R.; Braam, R.; Monnink, S.H.J.; van Tooren, R.; Mast, T.P.; van den Akker, F.; Cramer, M.J.M.; Poldervaart, J.M.; Hoes, A.W. & Doevend. (2013). A prospective validation of the HEART score for chest pain patients at the emergency department. International Journal of Cardiology, 2153-2158.
Benjamin, EJ; Virani, SS; Callaway, CW; Chang, AR; Cheng, S; Chiuve, SE; Cushman, M; Delling, FN; Deo, R; De Ferranti, SD; Ferguson, JF; Fornage, M; Gillespie, C; Isasi, CR; Jimenez, MC; Jordan, LC; Judd, SE; Lackland, D; Lichtman, JH; Lisabeth, L & Liu, S. (2018). Heart Disease and Stroke Statistics 2018 At-a-Glance Retrieved from
Berikol, G#westeur055#ksu Bozdereli; Yildiz, Oktay & #westeur023#zcan, İ. T#westeur061#rkay. (2016). Diagnosis of Acute Coronary Syndrome with a Support Vector Machine. Journal of Medical Systems.
Bewick, Viv; Cheek, Liz & Ball, Jonathan. (2005). Statistics review 14: Logistic regression. Critical care (London, England), 9(1), 112-118. doi:10.1186/cc3045
BMJ Publishing Group. (n.d.). Overview of acute coronary syndrome. Retrieved from https://bestpractice.bmj.com/topics/en-us/152#referencePop1
Brieger, D.; Eagle, K. A.; Goodman, S. G.; Steg, P. G.; Budaj, A.; White, K. & Montalescot, G. (2004a). Acute coronary syndromes without chest pain, an underdiagnosed and undertreated high-risk group: insights from the Global Registry of Acute Coronary Events. Chest, 126(2), 461-469. doi:10.1378/chest.126.2.461
Brieger, David; Eagle, Kim A.; Goodman, Shaun G.; Steg, Gabriel; Budaj, Andrzej; White, Kami & Montalescot, Gilles. (2004b). Acute Coronary Syndromes Without Chest Pain, An Underdiagnosed and Undertreated High-Risk Group. CHEST.
Chen, KC; Hsu, JC & Cheng, IN. (2012). Using presenting symptoms to revise the “heart-broken index” for the triage of acute myocardial infarction. Paper presented at the APSC Subspecialty Congress Intervention and Imaging 2012, Taipei International Convention Center, Taipei.
Clinical ECG Interpretation. (n.d.). NSTEMI (non ST elevation myocardial infarction) & unstable angina: diagnosis, criteria, ECG, management. Retrieved from https://ecgwaves.com/nstemi-non-st-elevation-myocardial-infarction-unstable-angina-criteria-ecg-diagnosis-management/
Crichton, Nicola. (1999). Information Point: Tukey Multiple Comparison Test. Journal of Clinical Nursing, 8.
Demirkan, B.; Ege, M. R.; Dogan, P.; Ipek, E. G.; Guray, U. & Guray, Y. (2013). Factors influencing the use of ambulance among patients with acute coronary syndrome: results of two centers in Turkey. Anadolu Kardiyol Derg, 13(6), 516-522. doi:10.5152/akd.2013.171
Deo, Rahul C. (2015). Machine Learning in Medicine. Circulation, 132(20), 1920-1930. doi:10.1161/CIRCULATIONAHA.115.001593
Devon, H. A.; Rosenfeld, A.; Steffen, A. D. & Daya, M. (2014). Sensitivity, specificity, and sex differences in symptoms reported on the 13-item acute coronary syndrome checklist. J Am Heart Assoc, 3(2), e000586. doi:10.1161/JAHA.113.000586
Domingos, Pedro. (2012). A few useful things to know about machine learning %J Commun. ACM. 55(10), 78-87. doi:10.1145/2347736.2347755
Egan, J. P. (1975). Signal detection theory and ROC analysis. New York: Academic Press.
Fanaroff, Alexander C.; Rymer, Jeniffer A. & Goldstein, Sarah A. (2015). Acute Coronary Syndrome. JAMA.
Farmakis, Dimitrios; Parissis, John; Lekakis, John & Filippatos, Gerasimos. (2015). Acute Heart Failure: Epidemiology, Risk Factors, and Prevention. Revista Espa#westeur050#ola de Cardiolog#westeur046#a (English Edition), 68(03), 245-248.
Fogoros, Richard N (Producer). (2018, October 7). Non-ST Segment Myocardial Infarction. verywell health Retrieved from https://www.verywellhealth.com/non-st-segment-elevation-myocardial-infarction-nstemi-1746017
Goodacre, S.; Cross, E.; Arnold, J.; Angelini, K.; Capewell, S. & Nicholl, J. (2005). The health care burden of acute chest pain. Heart Journal, 229-230.
Goodacre, S.W.; Angelini, K.; Arnold, J.; Revill, S. & Morris, F. (2003). Clinical predictors of ACS in patients with undifferentiated chest pain. Q J Med, 6. doi:10.1093/qjmed/hcg152
Greenslade, Jaimi H.; Cullen, Louise; Parsonage, William; Reid, Christopher M.; Body, Richard; Richards, Mark; Hawkins, Tracy; Lim, Swee Han & Than, Martin. (2012). Examining the Signs and Symptoms Experienced by Individuals With Suspected Acute Coronary Syndrome in the Asia-Pacific Region: A Prospective Observational Study. Annals of Emergency Medicine.
Hajian-Tilaki, Karimollah. (2013). Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian journal of internal medicine, 4(2), 627-635.
Hess, E. P.; Brison, R. J.; Perry, J. J.; Calder, L.A.; Thiruganasambandamoorthy, V.; Agarwal, D.; Sadosty, A.; Silvilotti, M.L.A.; Jaffe, A.S.; Montori, V.M.; Wells, G.A. & Stiell, I.G. (2012). Development of a Clinical Prediction Rule for 30-Day Cardiac Events in Emergency Department Patients With Chest Pain and Possible Acute Coronary Syndrome. Annals of Emergency Medicine, 115-125.
Hollander, Judd E.; Than, Martin & Mueller, Christian. (2016). State-of-the-Art Evaluation of Emergency Department Patients Presenting With Potential Acute Coronary Syndromes. Circulation AHA, 547-564.
Hosmer, D.W. & Lemeshow, S. . (2000). Applied Logistic Regression (2nd ed.): John Wiley & Sons, Inc.
Hsu, JC; Chen, KC; Cheng, IN & Li, AH. (2011). Using heart broken index to improve the diagnostic accuracy of patient with STEMI and shorten door-to-balloon time on emergency department. Paper presented at the American Heart Association 2011 Scientific Sessions, Orlando.
JL, Anderson; Adams, CD; Antman, EM; Bridges, CR; Califf, RM; Casey, DE Jr; Chavey, WE 2nd; Fesmire, FM; Hochman, JS; Levin, TN; Lincoff, AM; Peterson, ED; Theroux, P; Wenger, NK; Wright, RS; Smith, SC Jr; Jacobs, AK; Halperin, JL; Hunt, SA & Krumholz, HM. (2007). ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. Journal of the American College of Cardiology, e1-e157.
Kauffman, J. (2005, October 1). Atomic Bombing of Hiroshima and Nagasaki: Barbaric Tactic or Quick Way to End the War? Issue & Controversies in American History.
Kent State University, KSU. (2019). SPSS Tutorials: One Sample t Test. Retrieved from https://libguides.library.kent.edu/SPSS/OneSampletTest
Khambatta, S.; Farkouh, M. E.; Wright, R. S.; Reeder, G. S.; Mcculough, P. A.; Smars, P. A.; Hickson, L. & Best, P. J. . (2012). Chronic kidney disease as a risk factor for acute coronary syndromes in patients presenting to the emergency room with chest pain. Transnational Research, 6.
Kumar, Amit & Cannon, Christopher P. (2009). Acute Coronary Syndromes: Diagnosis and Management, Part I. Mayo Clinic Proceedings, 917-938.
Larson, D.; Menssen, K.; Sharkey, S.; Duval, S.; Schwartz, R.S.; Harris, J; Meland, J.T.; Unger, B.T. & Henry, T.D. (2007). False-positive” cardiac catheterization laboratory activation among patients with suspected ST-segment elevation myocardial infarction. JAMA, 2754–2760.
Lee, C; Lin, R F; Huang, TC & Tsai, K C. (2018). A symptom cluster-based triaging system for patients presenting to the emergency department with possible acute coronary syndromes. Journal of Ambient Intelligence and Humanized Computing.
Lopez, B.; Sanchez, M.; Bragulat, E.; Jimenez, S.; Coll-Vinent, B.; Ortega, M.; Gomez-Angelats, E. & Miro, O. (2011). Validation of a triage flowchart to rule out acute coronary syndrome. Emerg Med J, 28(10), 841-846. doi:10.1136/emj.2010.096602
Mayo Clinic. (2017). Acute Coronary Syndrome. Retrieved from https://www.mayoclinic.org/diseases-conditions/acute-coronary-syndrome/symptoms-causes/syc-20352136
McCullough, C. L. ; Novobilski, A. J. & Fesmire, F. M. (2007, 13-15 Dec. 2007). Use of Neural Networks to Predict Adverse Outcomes from Acute Coronary Syndrome for Male and Female Patients. Paper presented at the Sixth International Conference on Machine Learning and Applications (ICMLA 2007).
Milner, Kerry A.; Funk, Marjorie; Arnold, Amy & Vaccarino, Viola. (2002). Typical symptoms are predictive of acute coronary syndrome in women. American Heart Journal, 6. doi:10.1067/mhj.2002.119759
Minitab 18 Support. (2019). What is a general linear model? Retrieved from https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/anova/supporting-topics/basics/what-is-a-general-linear-model/
O'Gara, PT; Kushner, FG; Ascheim, DD; Casey, DE Jr; Chung, MK; de Lemos, JA; Ettinger, SM; Fang, JC; Fesmire, FM; Franklin, BA; Granger, CB; Krumholz, HM; Linderbaum, JA; Morrow, DA; Newby, LK; Ornato, JP; Ou, N; Radford, MJ & Tamis-Holland, JE. (2013). 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, e78–e140.
Panju, Akbar A.; Hemmelgarm, Brenda R.; Guyatt, Gordon H. & Simel, David L. (1998). The Rational Clinical Examination: Is This Patient Having a Myocardial Infarction? JAMA, 1256-1263.
Pollack, Charles V. Jr.; Sites, Frank D.; Shofer, Frances, S.; Sease, Keara L. & Hollander, Judd E. (2006). Application of the TIMI Risk Score for Unstable Angina and Non-ST Elevation Acute Coronary Syndrome to an Unselected Emergency Department Chest Pain Population. Academic Emergency Medicine, 13–18.
Pope, J; Ruthazer, R; Beshansky, JR; Griffith, JL & Selker, HP. (1998). Clinical Features of Emergency Department Patients Presenting with Symptoms Suggestive of Acute Cardiac Ischemia: A Multicenter Study. J Thromb Thrombolysis, 63-74.
Pope, J. Hector; Aufderheide, Tom P.; Ruthazer, Robin; Woolard, Robert H.; Feldman, James A.; Beshansky, Joni R.; Griffith, John L. & Selker, Harry P. (2000). Missed Diagnoses of Acute Cardiac Ischemia in the Emergency Department. New England Journal of Medicine, 342(16), 1163-1170. doi:10.1056/nejm200004203421603
Roberts, R. R.; Zalenski, R. J.; Mensah, E. K.; Rydman, R. J.; Ciavarella, G.; Gussow, L.; Das, K.; Kampe, L. M.; Dickover, B.; McDermott, M. F.; Hart, A.; Straus, H. E.; Murphy, D. G. & Rao, R. (1997). Costs of an emergency department-based accelerated diagnostic protocol vs hospitalization in patients with chest pain: a randomized controlled trial. JAMA, 278(20), 1670-1676.
Rowe, B.H.; Guo, X.; Villa-Roel, C.; Schull, M.; Holroyd, B.; Bullard, M.; Vandermeer, B.; Ospina, M. & Innes, G. (2011). The role of triage liaison physicians on mitigating overcrowding in emergency departments: a systematic review. Acad Emerg Med, 111-120.
Saab, F.; Mukherjee, D.; Gurm, H.; Motivala, A.; Montgomery, D.; Kline-Rogers, E.; Rubenfire, M. & Eagle, K. . (2009). Risk Factors in First Presentation Acute Coronary Syndromes (ACS): How Do We Move From Population to Individualized Risk Prediction? Angiology, 60, 5.
Salway, R. J.; Valenzuela, R.; Shoenberger, J. M.; Mallon, W. K. & Viccellio, A. (2017). Emergency Department (ED) Overcrowding: Evidence-Based Anwers to Frequently Asked Questions. Revista M#westeur042#dica Cl#westeur046#nica Las Condes, 28(2), 213-219. doi:https://doi.org/10.1016/j.rmclc.2017.04.008
Sanchez, M.; Lopez, B.; Bragulat, E.; Gomez-Angelats, E.; Jimenez, S.; Ortega, M.; Coll-Vinent, B.; Alonso, J. R.; Queralt, C. & Miro, O. (2007). Triage flowchart to rule out acute coronary syndrome. Am J Emerg Med, 25(8), 865-872. doi:10.1016/j.ajem.2006.12.025
Sheridan, P. J. & Crossman, D. C. (2002). Critical review of unstable angina and non-ST elevation myocardial infarction. Postgraduate Medical Journal, 78(926), 717. doi:10.1136/pmj.78.926.717
Six, A.J.; Backus, B.E. & Kelder, J.C. (2008). Chest pain in the emergency room: value of the HEART score. Netherlands Heart Journal, 191-196.
Smith, Jennifer N.; Negrelli, Jenna M.; Manek, Megha B.; Hawes, Emily M. & Viera, Anthony J. (2015). Diagnosis and Management of Acute Coronary Syndrome: An Evidence-Based Update. Journal of the American Board of Family Medicine, 11.
Sperandei, Sandro. (2014). Understanding logistic regression analysis. Biochemia medica, 24(1), 12-18. doi:10.11613/BM.2014.003
Stanislaw, Harold & Todorov, Natasha. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137-149. doi:10.3758/bf03207704
Than, M.; Flaws, D.; Sanders, S.; Doust, J.; Glasziou, P.; Kline, J.; Aldous, S.; Troughton, R.; Reid, C.; Parsonage, W.A.; Frampton, C.; Greenslade, J.H.; Deely, J.M.; Hess, E.; Bin Sadiq, A; Singleton, R.; Shopland, R.; Vercoe, L. & Woolhouse-Williams, M. (2014). Development and validation of the Emergency Department Assessment of Chest pain Score and 2 h accelerated diagnostic protocol. Emergency Medicine Australasia, 34–44.
Thygesen, Kristian; Alpert, Joseph S.; Jaffe, Allan S.; Simoons, Maarten L.; Chaitman, Bernard R. & White, Harvey D. (2012). Third universal definition of myocardial infarction. Circulation, 2020 –2035.
Tsai, K C; Lin, R F; Lee, C & Li, A H. (2018). An alternative tool for triaging patients with possible acute coronary symptoms before admission to a chest pain unit. American Journal of Emergency Medicine, 1222-1230.
Twerenbold, R.; Boeddinghaus, J.; Nestelberger, T.; Wildi, K.; Rubini Gimenez, M.; Badertscher, P. & Mueller, C. (2017). Clinical Use of High-Sensitivity Cardiac Troponin in Patients With Suspected Myocardial Infarction. J Am Coll Cardiol, 70(8), 996-1012. doi:10.1016/j.jacc.2017.07.718
Van Stralen, K. J.; Stel, V. S.; Reitsma, J. B.; Dekker, F. W.; Zoccali, C. & Jager, K. J. (2009). Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int, 75(12), 1257-1263. doi:10.1038/ki.2009.92
Wald, N. J. & Bestwick, J. P. (2014). Is the area under an ROC curve a valid measure of the performance of a screening or diagnostic test? J Med Screen, 21(1), 51-56. doi:10.1177/0969141313517497
World Health Organization. (2011). Global atlas on cardiovascular disease prevention and control. Retrieved from Geneva:
World Health Organization, WHO. (n.d.). Prevention of Recurrences of Myocardial Infarction and Stroke Study. Retrieved from http://www.who.int/cardiovascular_diseases/priorities/secondary_prevention/country/en/index1.html
Yusuf, Salim ; Hawken, Steven; #westeur021#unpuu, Stephanie; Dans, Tony ; Avezum, Alvaro ; Lanas, Fernando ; McQueen, Matthew ; Budaj, Andrzej ; Pais, Prem ; Varigos, John & Lisheng, Liu (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 364, 16.
Zarich, S. W.; Sachdeva, R.; Fishman, R.; Werdmann, M. J.; Parniawski, M.; Bernstein, L. & Dilella, M. (2004). Effectiveness of a multidisciplinary quality improvement initiative in reducing door-to-balloon times in primary angioplasty. J Interv Cardiol, 17(4), 191-195. doi:10.1111/j.1540-8183.2004.00383.x
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top