跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳品萱
研究生(外文):Pin-Hsuan Chen
論文名稱:透過DNA拷貝數變異分析與全外顯子體定序偵測整體發展遲緩與智能障礙兒童之基因體變異
論文名稱(外文):Identification of genetic aberrations in children with global developmental delay/ intellectual disability through detecting DNA copy number changes and whole exome sequencing
指導教授:陳燕彰陳燕彰引用關係
指導教授(外文):Yann-Jang Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:139
中文關鍵詞:拷貝數變異次世代定序整體發展遲緩智能障礙全外顯子體定序
外文關鍵詞:copy number variationsnext generation sequencingglobal developmental delayintellectual disabilitywhole exome sequencing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
發展遲緩(developmental delay)是指六歲以下的兒童,在認知、語言表達、粗細動作、情緒發展、人際溝通、與日常生活等方面,有一種或多種以上比同齡兒童的發展落後,其成因相當複雜。智能發展障礙(intellectual disability)則常在幼兒期以發展遲緩形式表現。臨床上針對兒童進行早期療育評估時,經初步排除社會心理因素與環境因子後,通常會考量是否因遺傳因素致病。基因拷貝數變異(copy number variations, CNVs)被指出是可能引致發展遲緩的遺傳因素之一。目前應用上仍以微陣列比較基因體雜合法(array comparative genomic hybridization, aCGH)為主要的CNV偵測工具,然而近年來次世代定序技術的興起與成熟,為研究人類疾病的遺傳基礎提供了新的方法,方便研究者針對基因體變異(包含CNVs與單一鹼基變異等)進行更全面的鑑測與高解析度的序列分析。本篇研究旨在探討全外顯子體定序(whole exome sequencing, WES)相較於現行的aCGH作為發展遲緩第一線檢測工具之效率。
本篇研究對象為受診斷為整體發展遲緩或智能障礙的322名兒童。所有受試者皆已完成aCGH檢測,總體的陽性檢出率為17.1%。我們收取34名個案檢體進行WES檢測,其中24名包含該個案的父母樣本。本研究中以Agilent SureSelect target enrichment system進行富集(enrichment)於Illumina HiSeq2000平台完成WES。後續資料分析則是利用Varseq v2.1.0進行。
在aCGH未有陽性檢出的個案中,我們透過trio analysis,除了個案以外亦納入父母的樣本進行分析,期能在其定序資料中找到最可能造成個體發展遲緩的致病變異。在14個目前已完成分析的trios中,我們發現了4個已知的致病基因變異:TUBA1A (p.Arg214His)、TMEM240 (p.Val115Met)、TUBB2B (p.Ala248Val)、及SMARCA2 (p.Pro883Leu);其中TUBA1A (p.Arg214His) 與SMARCA2 (p.Pro883Leu)則分別與該個體所呈現的平腦症第三型(Lissencephaly 3)與Nicolaides-Baraitser syndrome之疾病表徵吻合。此外,我們也在12個個案中發現可能與發展遲緩或智能障礙有關的CNVs。
我們亦納入了10個先前aCGH已檢出帶有CNVs的個案,希望能夠探討aCGH與WES檢測結果的一致性。在這10個個案中,aCGH共在13個基因體區域中探測到CNVs;藉由WES的CNV偵測技術,亦在其中11個區域發現變異。
在目前已完成WES資料分析的14 trios與10 singletons中,平均每個個案可偵測到115個p<0.01的CNVs。這些CNVs的大小範圍落在119個鹼基對至1500萬個鹼基對;平均而言,每個個案約有91個<100kb的CNVs、23個大小介於100kb至1Mb的CNVs、與1個超過1Mb的CNV。在這些CNVs中,基因重複(duplications)佔約65%。
我們透過定量聚合酶連鎖反應,評估WES所偵測到的CNVs之精準性與正確性。我們將CNV calls依照其類別與大小分為六個項次,並取出各項次中1%的CNV calls進行檢測;換言之,我們從14 trios與10 singletons的WES資料中所偵測到的2764個CNVs中,取出30個CNVs進行驗證,其中有2個CNVs為先前研究指出可能與發展遲緩或智能障礙相關,另有3個CNVs落在先前aCGH所偵測到的區域之中。在所有以qPCR進行驗證的CNVs中,12個(40%)的DNA相對量值(relative quantity)與其CNV類別吻合。
在此我們希望呈示WES偵測CNVs與SNVs的能力。以WES的多功能性、相對低廉的價格、與加快診斷之潛力,可望作為發展遲緩新的第一線檢測技術。
Developmental delay (DD) describes the condition when a child reaches developmental milestones in cognitive, speech/language, fine/gross motor, emotional, social/personal skills and activities of living later than the expected time during infancy and early childhood. Multiple factors may contribute to such delay. Intellectual disability (ID) may also be reflected as DD in early childhood. Clinically, when evaluating a child during early intervention, the pediatrician may consider the probability of genomic aberrations after ruling out socio-psychological or environmental factors. Copy number variations (CNVs) have been regarded as one of the major causes of DD. While array comparative genomic hybridization (aCGH) has been the current golden standard of CNV detection, next generation sequencing (NGS) techniques have evolved into a novel strategy for studying the genetic basis of human diseases, facilitating comprehensive characterization of genomic aberrations, inclusive of both CNVs and single nucleotide variants (SNVs), and analysis of high-resolution sequence data. The aim of this study is to determine the efficiency of whole exome sequencing (WES) as a first-tier diagnostic test in comparison with aCGH for DD.
We have enrolled 322 subjects diagnosed with global developmental delay or intellectual disability of unknown cause. All individuals have completed aCGH tests (Positive rate: 17.1%). WES was performed on 34 cases, 24 of whom include both parents, with Agilent SureSelect target enrichment system using Illumina HiSeq2000. Analysis of WES data was conducted using Varseq v2.1.0.
In cases whose aCGH tests revealed no positive findings, trio analyses were conducted in hopes of identifying causal variants most closely related to the conditions in the afflicted individuals. We have discovered 4 known rare pathogenic variants that may contribute to GDD/ID out of the 14 trios analyzed so far; they are TUBA1A (p.Arg214His), TMEM240 (p.Val115Met), TUBB2B (p.Ala248Val), and SMARCA2 (p.Pro883Leu). Moreover, 2 of these variants, TUBA1A (p.Arg214His) and SMARCA2 (p.Pro883Leu), correspond with the clinical phenotypes of the affected children, lissencephaly 3 and Nicolaides-Baraitser syndrome, respectively. Furthermore, CNVs in regions that are previously reported to be linked with DD/ID were also discovered in 12 of the cases.
We have also included 10 singletons with positive findings in aCGH tests in order to determine the consistency in CNV detection between aCGH and WES tests. Out of the 13 CNVs called using aCGH, we detected CNVs in 11 regions by analyzing WES data. It is also noticed that CNV calling in WES data is more powerful in calling smaller CNV events.
Among the 14 trios and 10 probands that have been analyzed so far, 115 CNVs with p-values<0.01 were called per case on average. Spans of these CNVs ranged from 119bp to 15Mbp, with approximately 91 CNVs <100kb, 23 CNVs 100kb-1Mb, and 1 CNVs >1Mb in each case. Duplications account for 65.0% confident CNV calls.
Further validation by real-time quantitative PCR (qPCR) was conducted to confirm the precision and accuracy of CNV detection results by WES. CNV calls were divided into 6 strata according to their types and spans. In the 14 trios and 10 singletons, 1% of CNV calls have been drawn from each stratum (30 out of the total 2764 CNVs) for validation, 2 of which were detected in aCGH-negative cases and were previously reported to be associated with DD/ID, and 3 of which lay in the genomic regions that were previously called using aCGH. A total of 12 CNVs (40%) out of the 30 tested CNVs have at least one region that have RQ values that are suggestive or indicative of their CNV types (losses or gains).
Here we shall demonstrate the capacity of WES for detecting CNVs and SNVs. WES may be considered a promising first-tier diagnostic tool for its versatility, moderate cost, and the potential to reduce diagnostic odyssey. 
Acknowledgements......i
摘要......iii
Abstract......v
Table of Contents......vii
Introduction......1
Specific Aims......9
Materials and Methods......10
Results......16
Discussion......30
References......34
Figures......47
Tables......92
Appendices......108
Aicardi, J. (1998). The etiology of developmental delay. Seminars in Pediatric Neurology, 5(1), 15–20. https://doi.org/https://doi.org/10.1016/S1071-9091(98)80013-2
Alkan, C., Coe, B. P., &Eichler, E. E. (2011). Genome structural variation discovery and genotyping. Nature Reviews Genetics, 12(5), 363–376. https://doi.org/10.1038/nrg2958
Altshuler, D., Donnelly, P., &Consortium, T. I. H. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320. https://doi.org/10.1038/nature04226
Anhuf, D., Eggermann, T., Rudnik-Schöneborn, S., &Zerres, K. (2003). Determination of SMN1 and SMN2 copy number using TaqManTM technology. Human Mutation, 22(1), 74–78. https://doi.org/10.1002/humu.10221
Antonarakis, S. E., Kazazian, H. H., &Tuddenham, E. G. D. (1995). Molecular etiology of factor VIII deficiency in hemophilia A. Human Mutation, 5(1), 1–22. https://doi.org/10.1002/humu.1380050102
Aradhya, S., Manning, M. A., Splendore, A., &Cherry, A. M. (2007). Whole-genome array-CGH identifies novel contiguous gene deletions and duplications associated with developmental delay, mental retardation, and dysmorphic features. American Journal of Medical Genetics Part A, 143A(13), 1431–1441. https://doi.org/10.1002/ajmg.a.31773
Bae, J. S., Cheong, H. S., Kim, J.-O., Lee, S. O., Kim, E. M., Lee, H. W., …Shin, H. D. (2008). Identification of SNP markers for common CNV regions and association analysis of risk of subarachnoid aneurysmal hemorrhage in Japanese population. Biochemical and Biophysical Research Communications, 373(4), 593–596. https://doi.org/https://doi.org/10.1016/j.bbrc.2008.06.083
Bien-Willner, G. A., Stankiewicz, P., &Lupski, J. R. (2007). SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the SHH pathway. Human Molecular Genetics, 16(10), 1143–1156. https://doi.org/10.1093/hmg/ddm061
Bruder, C. E. G., Piotrowski, A., Gijsbers, A. A. C. J., Andersson, R., Erickson, S., Diaz de Ståhl, T., …Dumanski, J. P. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. American Journal of Human Genetics, 82(3), 763–771. https://doi.org/10.1016/j.ajhg.2007.12.011
Butler, M. G., Theodoro, M. F., Bittel, D. C., &Donnelly, J. E. (2007). Energy Expenditure and Physical Activity in Prader-Willi Syndrome. American Journal of Medical Genetics. Part A, 143A(18), 2106–2112. https://doi.org/10.1002/ajmg.a
Chance, P. F., Alderson, M. K., Leppig, K. A., Lensch, M. W., Matsunami, N., Smith, B., …Bird, T. D. (1993). DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell, 72(1), 143–151. https://doi.org/https://doi.org/10.1016/0092-8674(93)90058-X
Chance, P. F., &Pleasure, D. (1993). Charcot-Marie-Tooth Syndrome. JAMA Neurology, 50(11), 1180–1184. https://doi.org/10.1001/archneur.1993.00540110060006
Chang, B. S., Apse, K. A., Caraballo, R., Cross, J. H., Mclellan, A., Jacobson, R. D., …Walsh, C. A. (2006). A familial syndrome of unilateral polymicrogyria affecting the right hemisphere. Neurology, 66(1), 133 LP – 135. https://doi.org/10.1212/01.wnl.0000191393.06679.e9
Chen, Q., Book, M., Fang, X., Hoeft, A., &Stuber, F. (2006). Screening of copy number polymorphisms in human β-defensin genes using modified real-time quantitative PCR. Journal of Immunological Methods, 308(1), 231–240. https://doi.org/https://doi.org/10.1016/j.jim.2005.11.001
Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., …Hurles, M. E. (2009). Origins and functional impact of copy number variation in the human genome. Nature, 464, 704. Retrieved from https://doi.org/10.1038/nature08516
Cooper, G. M., Coe, B. P., Girirajan, S., Rosenfeld, J. A., Vu, T. H., Baker, C., …Eichler, E. E. (2011). A copy number variation morbidity map of developmental delay. Nature Genetics, 43(9), 838–846. https://doi.org/10.1038/ng.909
D’haene, B., Vandesompele, J., &Hellemans, J. (2010). Accurate and objective copy number profiling using real-time quantitative PCR. Methods, 50(4), 262–270. https://doi.org/10.1016/j.ymeth.2009.12.007
Delplanque, J, Devos, D., Vuillaume, I., DeBecdelievre, A., Vangelder, E., Maurage, C. A., …Sablonnière, B. (2008). Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). The Cerebellum, 7(2), 179–183. https://doi.org/10.1007/s12311-008-0014-3
Delplanque, Jérôme, Devos, D., Huin, V., Genet, A., Sand, O., Moreau, C., …Sablonnière, B. (2014). TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain, 137(10), 2657–2663. https://doi.org/10.1093/brain/awu202
Drillien, C. M., Pickering, R. M., &Drummond, M. B. (1988). Predictive Value of Screening for Different Areas of Development. Developmental Medicine & Child Neurology, 30(3), 294–305. https://doi.org/10.1111/j.1469-8749.1988.tb14554.x
Ellison, J. W., Rosenfeld, J. A., &Shaffer, L. G. (2012). Genetic Basis of Intellectual Disability. Annual Review of Medicine, 64(1), 441–450. https://doi.org/10.1146/annurev-med-042711-140053
Fallet-Bianco, C., Laquerrière, A., Poirier, K., Razavi, F., Guimiot, F., Dias, P., …Bahi-Buisson, N. (2014). Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathologica Communications, 2(1), 69. https://doi.org/10.1186/2051-5960-2-69
Fanciulli, M., Norsworthy, P. J., Petretto, E., Dong, R., Harper, L., Kamesh, L., …Aitman, T. J. (2007). FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nature Genetics, 39(6), 721–723. https://doi.org/10.1038/ng2046
Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T. F., &Wirth, B. (2002). Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. American Journal of Human Genetics, 70(2), 358–368. https://doi.org/10.1086/338627
Feng, Y., Chen, D., &Wong, L.-J. C. (2017). Detection of Copy Number Variations (CNVs) Based on the Coverage Depth from the Next Generation Sequencing Data BT - Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders (L.-J. C.Wong, ed.). https://doi.org/10.1007/978-3-319-56418-0_2
Feuk, L., Carson, A. R., &Scherer, S. W. (2006). Structural variation in the human genome. Nature Reviews Genetics, 7(2), 85–97. https://doi.org/10.1038/nrg1767
Fortier, N., Rudy, G., &Scherer, A. (2018). Detection of CNVs in NGS data using VS-CNV. Methods in Molecular Biology, 1833, 115–127. https://doi.org/10.1007/978-1-4939-8666-8_9
Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., …Purcell, S. M. (2012). Discovery and Statistical Genotyping of Copy-Number Variation from Whole-Exome Sequencing Depth. 597–607. https://doi.org/10.1016/j.ajhg.2012.08.005
Gallimore, R., Keogh, B. K., &Bernheimer, L. P. (1999). The Nature and Long-Term Implications of Early Developmental Delays: A Summary of Evidence from Two Longitudinal Studies. International Review of Research in Mental Retardation, 22, 105–135. https://doi.org/10.1016/S0074-7750(08)60132-9
GRAHAM, S. M., &SELIKOWITZ, M. (1993). Chromosome testing in children with developmental delay in whom the aetiology is not evident clinically. Journal of Paediatrics and Child Health, 29(5), 360–362. https://doi.org/10.1111/j.1440-1754.1993.tb00535.x
Heid, C. A., Stevens, J., Livak, K. J., &Williams, P. M. (1996). Real time quantitative PCR. Genome Research , 6(10), 986–994. https://doi.org/10.1101/gr.6.10.986
Hoebeeck, J., Van DerLuijt, R., Poppe, B., DeSmet, E., Yigit, N., Claes, K., …Vandesompele, J. (2005). Rapid detection of VHL exon deletions using real-time quantitative PCR. Laboratory Investigation, 85(1), 24–33. https://doi.org/10.1038/labinvest.3700209
Königshoff, M., Wilhelm, J., Bohle, R. M., Pingoud, A., &Hahn, M. (2003). HER-2/neu Gene Copy Number Quantified by Real-Time PCR: Comparison of Gene Amplification, Heterozygosity, and Immunohistochemical Status in Breast Cancer Tissue. Clinical Chemistry, 49(2), 219 LP – 229. https://doi.org/10.1373/49.2.219
Krumm, N., Sudmant, P. H., Ko, A., O’Roak, B. J., Malig, M., Coe, B. P., …Eichler, E. E. (2012). Copy number variation detection and genotyping from exome sequence data. Genome Research, 22(8), 1525–1532. https://doi.org/10.1101/gr.138115.112
Kulka, J., Tokés, A.-M., Kaposi-Novák, P., Udvarhelyi, N., Keller, A., Lotz, G., &Schaff, Z. (2006). Detection of HER-2/neu gene amplification in breast carcinomas using quantitative real-time PCR — A comparison with immunohistochemical and FISH results. Pathology & Oncology Research, 12(4), 197. https://doi.org/10.1007/BF02893412
Kumar, R. A., Pilz, D. T., Babatz, T. D., Cushion, T. D., Harvey, K., Topf, M., …Dobyns, W. B. (2010). TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Human Molecular Genetics, 19(14), 2817–2827. https://doi.org/10.1093/hmg/ddq182
Kurotaki, N., J Shen, J., Touyama, M., Kondoh, T., Visser, R., Ozaki, T., …R Lupski, J. (2005). Phenotypic consequences of genetic variation at hemizygous alleles: Sotos syndrome is a contiguous gene syndrome incorporating coagulation factor twelve (FXII) deficiency. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 7, 479–483. https://doi.org/10.1097/01.GIM.0000177419.43309.37
Lee, H., Deignan, J. L., Dorrani, N., Strom, S. P., Kantarci, S., Quintero-rivera, F., …Nelson, S. F. (2019). Clinical Exome Sequencing for Genetic Identification of Rare Mendelian Disorders. 90095(18), 1880–1887. https://doi.org/10.1001/jama.2014.14604
Levy, S. E., &Hyman, S. L. (1993). Pediatric assessment of the child with developmental delay. Pediatric Clinics of North America, 40(3), 465–477. https://doi.org/10.1016/S0031-3955(16)38544-3
Li, H., &Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698
Lifton, R. P., Dluhy, R. G., Powers, M., Rich, G. M., Cook, S., Ulick, S., &Lalouel, J.-M. (1992). A chimaeric llβ-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature, 355(6357), 262–265. https://doi.org/10.1038/355262a0
Liu, X., Jian, X., &Boerwinkle, E. (2013). dbNSFP v2.0: A database of human non-synonymous SNVs and their functional predictions and annotations. Human Mutation, 34(9), 2393–2402. https://doi.org/10.1002/humu.22376
Lu, X.-Y., Phung, M. T., Shaw, C. A., Pham, K., Neil, S. E., Patel, A., …Beaudet, A. L. (2008). Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis. Pediatrics, 122(6), 1310–1318. https://doi.org/10.1542/peds.2008-0297
Lupski, J. R., deOca-Luna, R. M., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B. J., …Patel, P. I. (1991). DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 66(2), 219–232. https://doi.org/https://doi.org/10.1016/0092-8674(91)90613-4
Lupski, J. R., &Stankiewicz, P. (2005). Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genetics, 1(6), e49–e49. https://doi.org/10.1371/journal.pgen.0010049
MacDonald, J. R., Ziman, R., Yuen, R. K. C., Feuk, L., &Scherer, S. W. (2014). The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Research, 42(Database issue), D986–D992. https://doi.org/10.1093/nar/gkt958
Mafra, F., Mazzotti, D., Pellegrino, R., Bianco, B., Barbosa, C. P., Hakonarson, H., &Christofolini, D. (2017). Copy number variation analysis reveals additional variants contributing to endometriosis development. Journal of Assisted Reproduction and Genetics, 34(1), 117–124. https://doi.org/10.1007/s10815-016-0822-1
Makino, T., McLysaght, A., &Kawata, M. (2013). Genome-wide deserts for copy number variation in vertebrates. Nature Communications, 4, 2283. Retrieved from https://doi.org/10.1038/ncomms3283
Martin, C. L., Kirkpatrick, B. E., &Ledbetter, D. H. (2015). Copy Number Variants, Aneuploidies, and Human Disease. Clinics in Perinatology, 42(2), 227–242. https://doi.org/10.1016/j.clp.2015.03.001
Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T., &Saxena, S. (2011). Prevalence of intellectual disability: A meta-analysis of population-based studies. Research in Developmental Disabilities, 32(2), 419–436. https://doi.org/10.1016/j.ridd.2010.12.018
Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P., …Ledbetter, D. H. (2010). Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. American Journal of Human Genetics, 86(5), 749–764. https://doi.org/10.1016/j.ajhg.2010.04.006
Moeschler, J. B., &Shevell, M. (2014). Comprehensive Evaluation of the Child With Intellectual Disability or Global Developmental Delays. Pediatrics, 134(3), e903–e918. https://doi.org/10.1542/peds.2014-1839
Olshen, A. B., Venkatraman, E. S., Lucito, R., &Wigler, M. (2004). Circular binary segmentation for the analysis of array‐based DNA copy number data. Biostatistics, 5(4), 557–572. https://doi.org/10.1093/biostatistics/kxh008
Pang, A. W. C., MacDonald, J. R., Yuen, R. K. C., Hayes, V. M., &Scherer, S. W. (2014). Performance of High-Throughput Sequencing for the Discovery of Genetic Variation Across the Complete Size Spectrum. G3: Genes|Genomes|Genetics, 4(1), 63 LP – 65. https://doi.org/10.1534/g3.113.008797
Pang, A. W., MacDonald, J. R., Pinto, D., Wei, J., Rafiq, M. A., Conrad, D. F., …Scherer, S. W. (2010). Towards a comprehensive structural variation map of an individual human genome. Genome Biology, 11(5), R52. https://doi.org/10.1186/gb-2010-11-5-r52
Petersen, M. C., Kube, D. A., &Palmer, F. B. (1998). Classification of developmental delays. Seminars in Pediatric Neurology, 5(1), 2–14. https://doi.org/https://doi.org/10.1016/S1071-9091(98)80012-0
Piotrowski, A., Bruder, C. E. G., Andersson, R., deStåhl, T. D., Menzel, U., Sandgren, J., …Dumanski, J. P. (2008). Somatic mosaicism for copy number variation in differentiated human tissues. Human Mutation, 29(9), 1118–1124. https://doi.org/10.1002/humu.20815
R. LUPSKI, J., &F. CHANCE, P. (2005). Hereditary Motor and Sensory Neuropathies Involving Altered Dosage or Mutation of PMP22: The CMT1A Duplication and HNPP Deletion. In Peripheral Neuropathy (Vol. 2, pp. 1659–1680). https://doi.org/10.1016/B978-0-7216-9491-7.50073-9
Rauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., Becker, C., …Trautmann, U. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics Part A, 140A(19), 2063–2074. https://doi.org/10.1002/ajmg.a.31416
Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., …Hurles, M. E. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454. https://doi.org/10.1038/nature05329
Rosenfeld, J. A., Mason, C. E., &Smith, T. M. (2012). Limitations of the human reference genome for personalized genomics. PloS One, 7(7), e40294–e40294. https://doi.org/10.1371/journal.pone.0040294
Schiffels, S., &Durbin, R. (2014). Inferring human population size and separation history from multiple genome sequences. Nature Genetics, 46(8), 919–925. https://doi.org/10.1038/ng.3015
Shaffer, L. G., &American College of Medical Genetics Professional Practice and Guidelines Committee. (2005). American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 7(9), 650–654. https://doi.org/10.109701.gim.0000186545.83160.1e
Sharp, A. J., Cheng, Z., &Eichler, E. E. (2006). Structural Variation of the Human Genome. Annual Review of Genomics and Human Genetics, 7(1), 407–442. https://doi.org/10.1146/annurev.genom.7.080505.115618
Shevell, M. I. (1998). The evaluation of the child with a global developmental delay. Seminars in Pediatric Neurology, 5(1), 21–26. https://doi.org/https://doi.org/10.1016/S1071-9091(98)80014-4
Shevell, M, Ashwal, S., Donley, D., Flint, J., Gingold, M., Hirtz, D., …Sheth, R. D. (2003). Practice parameter: Evaluation of the child with global developmental delay. Neurology, 60(3), 367 LP – 380. https://doi.org/10.1212/01.WNL.0000031431.81555.16
Shevell, Michael. (2008). Global Developmental Delay and Mental Retardation or Intellectual Disability: Conceptualization, Evaluation, and Etiology. Pediatric Clinics of North America, 55(5), 1071–1084. https://doi.org/10.1016/j.pcl.2008.07.010
Shy, M. E., Scavina, M. T., Clark, A., Krajewski, K. M., Li, J., Kamholz, J., …Lupski, J. R. (2006). T118M PMP22 mutation causes partial loss of function and HNPP-like neuropathy. Annals of Neurology, 59(2), 358–364. https://doi.org/10.1002/ana.20777
Sousa, S. B., Abdul-Rahman, O. A., Bottani, A., Cormier-Daire, V., Fryer, A., Gillessen-Kaesbach, G., …Hennekam, R. C. M. (2009). Nicolaides–Baraitser syndrome: Delineation of the phenotype. American Journal of Medical Genetics Part A, 149A(8), 1628–1640. https://doi.org/10.1002/ajmg.a.32956
Stankiewicz, P., &Lupski, J. R. (2010). Structural Variation in the Human Genome and its Role in Disease. https://doi.org/10.1146/annurev-med-100708-204735
Sudmant, P. H., Mallick, S., Nelson, B. J., Hormozdiari, F., Krumm, N., Huddleston, J., …Eichler, E. E. (2015). Global diversity, population stratification, and selection of human copy-number variation. Science (New York, N.Y.), 349(6253), aab3761–aab3761. https://doi.org/10.1126/science.aab3761
Tan, R., Wang, Y., Kleinstein, S. E., Liu, Y., Zhu, X., Guo, H., …Zhu, M. (2014). An Evaluation of Copy Number Variation Detection Tools from Whole-Exome Sequencing Data. Human Mutation, 35(7), 899–907. https://doi.org/10.1002/humu.22537
Teo, S. M., Pawitan, Y., Ku, C. S., Chia, K. S., &Salim, A. (2012). Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics, 28(21), 2711–2718. https://doi.org/10.1093/bioinformatics/bts535
Terribas, E., Garcia-Linares, C., Lázaro, C., &Serra, E. (2013). Probe-Based Quantitative PCR Assay for Detecting Constitutional and Somatic Deletions in the NF1 Gene: Application to Genetic Testing and Tumor Analysis. Clinical Chemistry, 59(6), 928 LP – 937. https://doi.org/10.1373/clinchem.2012.194217
Tian, G., Jaglin, X. H., Keays, D. A., Francis, F., Chelly, J., &Cowan, N. J. (2010). Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway . Human Molecular Genetics, 19(18), 3599–3613. https://doi.org/10.1093/hmg/ddq276
VanHoudt, J. K. J., Nowakowska, B. A., Sousa, S. B., vanSchaik, B. D. C., Seuntjens, E., Avonce, N., …Vermeesch, J. R. (2012). Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nature Genetics, 44, 445. Retrieved from https://doi.org/10.1038/ng.1105
Velagaleti, G. V. N., Bien-Willner, G. A., Northup, J. K., Lockhart, L. H., Hawkins, J. C., Jalal, S. M., …Stankiewicz, P. (2005). Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. American Journal of Human Genetics, 76(4), 652–662. https://doi.org/10.1086/429252
Wilke, K., Duman, B., &Horst, J. (2000). Diagnosis of haploidy and triploidy based on measurement of gene copy number by real-time PCR. Human Mutation, 16(5), 431–436. https://doi.org/10.1002/1098-1004(200011)16:5<431::AID-HUMU8>3.0.CO;2-Z
Wright, C. F., Fitzgerald, T. W., Jones, W. D., Clayton, S., Mcrae, J. F., Kogelenberg, M.Van, …Fitzpatrick, D. R. (2015). Genetic diagnosis of developmental disorders in the DDD study : a scalable analysis of genome-wide research data. 1305–1314. https://doi.org/10.1016/S0140-6736(14)61705-0
Wu, Y. L., Savelli, S. L., Yang, Y., Zhou, B., Rovin, B. H., Birmingham, D. J., …Yu, C. Y. (2007). Sensitive and Specific Real-Time Polymerase Chain Reaction Assays to Accurately Determine Copy Number Variations (CNVs) of Human Complement C4A, C4B, C4-Long, C4-Short, and RCCX Modules: Elucidation of C4 CNVs in 50 Consanguineous Subjects with Defined HLA Genotypes. The Journal of Immunology, 179(5), 3012 LP – 3025. https://doi.org/10.4049/jimmunol.179.5.3012
Xi, R., Lee, S., &Park, P. J. (2012). A survey of copy-number variation detection tools based on high-throughput sequencing data. Current Protocols in Human Genetics, (SUPPL.75), 1–15. https://doi.org/10.1002/0471142905.hg0719s75
Yan, J., Bi, W., &Lupski, J. R. (2007). Penetrance of craniofacial anomalies in mouse models of Smith-Magenis syndrome is modified by genomic sequence surrounding Rai1: not all null alleles are alike. American Journal of Human Genetics, 80(3), 518–525. https://doi.org/10.1086/512043
Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., …Eng, C. M. (2013). Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders. New England Journal of Medicine, 369(16), 1502–1511. https://doi.org/10.1056/NEJMoa1306555
Zarrei, M., Macdonald, J. R., Merico, D., &Scherer, S. W. (2015). A copy number variation map of the human genome. Nature Publishing Group, 16(3), 172–183. https://doi.org/10.1038/nrg3871
Zhang, F., Gu, W., Hurles, M. E., &Lupski, J. R. (2009). Copy number variation in human health, disease, and evolution. Annual Review of Genomics and Human Genetics, 10, 451–481. https://doi.org/10.1146/annurev.genom.9.081307.164217
Zhao, M., Wang, Q., Wang, Q., Jia, P., &Zhao, Z. (2013). Computational tools for copy number variation (CNV) detection using next-generation sequencing data: Features and perspectives. BMC Bioinformatics, 14(SUPPL11). https://doi.org/10.1186/1471-2105-14-S11-S1
VarSeq™ (Version 8.x) [Software]. Bozeman, MT: Golden Helix, Inc. Available from http://www.goldenhelix.com.
Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), 2019.08.20. World Wide Web URL: https://omim.org/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊