|
Aicardi, J. (1998). The etiology of developmental delay. Seminars in Pediatric Neurology, 5(1), 15–20. https://doi.org/https://doi.org/10.1016/S1071-9091(98)80013-2 Alkan, C., Coe, B. P., &Eichler, E. E. (2011). Genome structural variation discovery and genotyping. Nature Reviews Genetics, 12(5), 363–376. https://doi.org/10.1038/nrg2958 Altshuler, D., Donnelly, P., &Consortium, T. I. H. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320. https://doi.org/10.1038/nature04226 Anhuf, D., Eggermann, T., Rudnik-Schöneborn, S., &Zerres, K. (2003). Determination of SMN1 and SMN2 copy number using TaqManTM technology. Human Mutation, 22(1), 74–78. https://doi.org/10.1002/humu.10221 Antonarakis, S. E., Kazazian, H. H., &Tuddenham, E. G. D. (1995). Molecular etiology of factor VIII deficiency in hemophilia A. Human Mutation, 5(1), 1–22. https://doi.org/10.1002/humu.1380050102 Aradhya, S., Manning, M. A., Splendore, A., &Cherry, A. M. (2007). Whole-genome array-CGH identifies novel contiguous gene deletions and duplications associated with developmental delay, mental retardation, and dysmorphic features. American Journal of Medical Genetics Part A, 143A(13), 1431–1441. https://doi.org/10.1002/ajmg.a.31773 Bae, J. S., Cheong, H. S., Kim, J.-O., Lee, S. O., Kim, E. M., Lee, H. W., …Shin, H. D. (2008). Identification of SNP markers for common CNV regions and association analysis of risk of subarachnoid aneurysmal hemorrhage in Japanese population. Biochemical and Biophysical Research Communications, 373(4), 593–596. https://doi.org/https://doi.org/10.1016/j.bbrc.2008.06.083 Bien-Willner, G. A., Stankiewicz, P., &Lupski, J. R. (2007). SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the SHH pathway. Human Molecular Genetics, 16(10), 1143–1156. https://doi.org/10.1093/hmg/ddm061 Bruder, C. E. G., Piotrowski, A., Gijsbers, A. A. C. J., Andersson, R., Erickson, S., Diaz de Ståhl, T., …Dumanski, J. P. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. American Journal of Human Genetics, 82(3), 763–771. https://doi.org/10.1016/j.ajhg.2007.12.011 Butler, M. G., Theodoro, M. F., Bittel, D. C., &Donnelly, J. E. (2007). Energy Expenditure and Physical Activity in Prader-Willi Syndrome. American Journal of Medical Genetics. Part A, 143A(18), 2106–2112. https://doi.org/10.1002/ajmg.a Chance, P. F., Alderson, M. K., Leppig, K. A., Lensch, M. W., Matsunami, N., Smith, B., …Bird, T. D. (1993). DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell, 72(1), 143–151. https://doi.org/https://doi.org/10.1016/0092-8674(93)90058-X Chance, P. F., &Pleasure, D. (1993). Charcot-Marie-Tooth Syndrome. JAMA Neurology, 50(11), 1180–1184. https://doi.org/10.1001/archneur.1993.00540110060006 Chang, B. S., Apse, K. A., Caraballo, R., Cross, J. H., Mclellan, A., Jacobson, R. D., …Walsh, C. A. (2006). A familial syndrome of unilateral polymicrogyria affecting the right hemisphere. Neurology, 66(1), 133 LP – 135. https://doi.org/10.1212/01.wnl.0000191393.06679.e9 Chen, Q., Book, M., Fang, X., Hoeft, A., &Stuber, F. (2006). Screening of copy number polymorphisms in human β-defensin genes using modified real-time quantitative PCR. Journal of Immunological Methods, 308(1), 231–240. https://doi.org/https://doi.org/10.1016/j.jim.2005.11.001 Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., …Hurles, M. E. (2009). Origins and functional impact of copy number variation in the human genome. Nature, 464, 704. Retrieved from https://doi.org/10.1038/nature08516 Cooper, G. M., Coe, B. P., Girirajan, S., Rosenfeld, J. A., Vu, T. H., Baker, C., …Eichler, E. E. (2011). A copy number variation morbidity map of developmental delay. Nature Genetics, 43(9), 838–846. https://doi.org/10.1038/ng.909 D’haene, B., Vandesompele, J., &Hellemans, J. (2010). Accurate and objective copy number profiling using real-time quantitative PCR. Methods, 50(4), 262–270. https://doi.org/10.1016/j.ymeth.2009.12.007 Delplanque, J, Devos, D., Vuillaume, I., DeBecdelievre, A., Vangelder, E., Maurage, C. A., …Sablonnière, B. (2008). Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). The Cerebellum, 7(2), 179–183. https://doi.org/10.1007/s12311-008-0014-3 Delplanque, Jérôme, Devos, D., Huin, V., Genet, A., Sand, O., Moreau, C., …Sablonnière, B. (2014). TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain, 137(10), 2657–2663. https://doi.org/10.1093/brain/awu202 Drillien, C. M., Pickering, R. M., &Drummond, M. B. (1988). Predictive Value of Screening for Different Areas of Development. Developmental Medicine & Child Neurology, 30(3), 294–305. https://doi.org/10.1111/j.1469-8749.1988.tb14554.x Ellison, J. W., Rosenfeld, J. A., &Shaffer, L. G. (2012). Genetic Basis of Intellectual Disability. Annual Review of Medicine, 64(1), 441–450. https://doi.org/10.1146/annurev-med-042711-140053 Fallet-Bianco, C., Laquerrière, A., Poirier, K., Razavi, F., Guimiot, F., Dias, P., …Bahi-Buisson, N. (2014). Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathologica Communications, 2(1), 69. https://doi.org/10.1186/2051-5960-2-69 Fanciulli, M., Norsworthy, P. J., Petretto, E., Dong, R., Harper, L., Kamesh, L., …Aitman, T. J. (2007). FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nature Genetics, 39(6), 721–723. https://doi.org/10.1038/ng2046 Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T. F., &Wirth, B. (2002). Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. American Journal of Human Genetics, 70(2), 358–368. https://doi.org/10.1086/338627 Feng, Y., Chen, D., &Wong, L.-J. C. (2017). Detection of Copy Number Variations (CNVs) Based on the Coverage Depth from the Next Generation Sequencing Data BT - Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders (L.-J. C.Wong, ed.). https://doi.org/10.1007/978-3-319-56418-0_2 Feuk, L., Carson, A. R., &Scherer, S. W. (2006). Structural variation in the human genome. Nature Reviews Genetics, 7(2), 85–97. https://doi.org/10.1038/nrg1767 Fortier, N., Rudy, G., &Scherer, A. (2018). Detection of CNVs in NGS data using VS-CNV. Methods in Molecular Biology, 1833, 115–127. https://doi.org/10.1007/978-1-4939-8666-8_9 Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., …Purcell, S. M. (2012). Discovery and Statistical Genotyping of Copy-Number Variation from Whole-Exome Sequencing Depth. 597–607. https://doi.org/10.1016/j.ajhg.2012.08.005 Gallimore, R., Keogh, B. K., &Bernheimer, L. P. (1999). The Nature and Long-Term Implications of Early Developmental Delays: A Summary of Evidence from Two Longitudinal Studies. International Review of Research in Mental Retardation, 22, 105–135. https://doi.org/10.1016/S0074-7750(08)60132-9 GRAHAM, S. M., &SELIKOWITZ, M. (1993). Chromosome testing in children with developmental delay in whom the aetiology is not evident clinically. Journal of Paediatrics and Child Health, 29(5), 360–362. https://doi.org/10.1111/j.1440-1754.1993.tb00535.x Heid, C. A., Stevens, J., Livak, K. J., &Williams, P. M. (1996). Real time quantitative PCR. Genome Research , 6(10), 986–994. https://doi.org/10.1101/gr.6.10.986 Hoebeeck, J., Van DerLuijt, R., Poppe, B., DeSmet, E., Yigit, N., Claes, K., …Vandesompele, J. (2005). Rapid detection of VHL exon deletions using real-time quantitative PCR. Laboratory Investigation, 85(1), 24–33. https://doi.org/10.1038/labinvest.3700209 Königshoff, M., Wilhelm, J., Bohle, R. M., Pingoud, A., &Hahn, M. (2003). HER-2/neu Gene Copy Number Quantified by Real-Time PCR: Comparison of Gene Amplification, Heterozygosity, and Immunohistochemical Status in Breast Cancer Tissue. Clinical Chemistry, 49(2), 219 LP – 229. https://doi.org/10.1373/49.2.219 Krumm, N., Sudmant, P. H., Ko, A., O’Roak, B. J., Malig, M., Coe, B. P., …Eichler, E. E. (2012). Copy number variation detection and genotyping from exome sequence data. Genome Research, 22(8), 1525–1532. https://doi.org/10.1101/gr.138115.112 Kulka, J., Tokés, A.-M., Kaposi-Novák, P., Udvarhelyi, N., Keller, A., Lotz, G., &Schaff, Z. (2006). Detection of HER-2/neu gene amplification in breast carcinomas using quantitative real-time PCR — A comparison with immunohistochemical and FISH results. Pathology & Oncology Research, 12(4), 197. https://doi.org/10.1007/BF02893412 Kumar, R. A., Pilz, D. T., Babatz, T. D., Cushion, T. D., Harvey, K., Topf, M., …Dobyns, W. B. (2010). TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Human Molecular Genetics, 19(14), 2817–2827. https://doi.org/10.1093/hmg/ddq182 Kurotaki, N., J Shen, J., Touyama, M., Kondoh, T., Visser, R., Ozaki, T., …R Lupski, J. (2005). Phenotypic consequences of genetic variation at hemizygous alleles: Sotos syndrome is a contiguous gene syndrome incorporating coagulation factor twelve (FXII) deficiency. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 7, 479–483. https://doi.org/10.1097/01.GIM.0000177419.43309.37 Lee, H., Deignan, J. L., Dorrani, N., Strom, S. P., Kantarci, S., Quintero-rivera, F., …Nelson, S. F. (2019). Clinical Exome Sequencing for Genetic Identification of Rare Mendelian Disorders. 90095(18), 1880–1887. https://doi.org/10.1001/jama.2014.14604 Levy, S. E., &Hyman, S. L. (1993). Pediatric assessment of the child with developmental delay. Pediatric Clinics of North America, 40(3), 465–477. https://doi.org/10.1016/S0031-3955(16)38544-3 Li, H., &Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698 Lifton, R. P., Dluhy, R. G., Powers, M., Rich, G. M., Cook, S., Ulick, S., &Lalouel, J.-M. (1992). A chimaeric llβ-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature, 355(6357), 262–265. https://doi.org/10.1038/355262a0 Liu, X., Jian, X., &Boerwinkle, E. (2013). dbNSFP v2.0: A database of human non-synonymous SNVs and their functional predictions and annotations. Human Mutation, 34(9), 2393–2402. https://doi.org/10.1002/humu.22376 Lu, X.-Y., Phung, M. T., Shaw, C. A., Pham, K., Neil, S. E., Patel, A., …Beaudet, A. L. (2008). Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis. Pediatrics, 122(6), 1310–1318. https://doi.org/10.1542/peds.2008-0297 Lupski, J. R., deOca-Luna, R. M., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B. J., …Patel, P. I. (1991). DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 66(2), 219–232. https://doi.org/https://doi.org/10.1016/0092-8674(91)90613-4 Lupski, J. R., &Stankiewicz, P. (2005). Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genetics, 1(6), e49–e49. https://doi.org/10.1371/journal.pgen.0010049 MacDonald, J. R., Ziman, R., Yuen, R. K. C., Feuk, L., &Scherer, S. W. (2014). The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Research, 42(Database issue), D986–D992. https://doi.org/10.1093/nar/gkt958 Mafra, F., Mazzotti, D., Pellegrino, R., Bianco, B., Barbosa, C. P., Hakonarson, H., &Christofolini, D. (2017). Copy number variation analysis reveals additional variants contributing to endometriosis development. Journal of Assisted Reproduction and Genetics, 34(1), 117–124. https://doi.org/10.1007/s10815-016-0822-1 Makino, T., McLysaght, A., &Kawata, M. (2013). Genome-wide deserts for copy number variation in vertebrates. Nature Communications, 4, 2283. Retrieved from https://doi.org/10.1038/ncomms3283 Martin, C. L., Kirkpatrick, B. E., &Ledbetter, D. H. (2015). Copy Number Variants, Aneuploidies, and Human Disease. Clinics in Perinatology, 42(2), 227–242. https://doi.org/10.1016/j.clp.2015.03.001 Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T., &Saxena, S. (2011). Prevalence of intellectual disability: A meta-analysis of population-based studies. Research in Developmental Disabilities, 32(2), 419–436. https://doi.org/10.1016/j.ridd.2010.12.018 Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P., …Ledbetter, D. H. (2010). Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. American Journal of Human Genetics, 86(5), 749–764. https://doi.org/10.1016/j.ajhg.2010.04.006 Moeschler, J. B., &Shevell, M. (2014). Comprehensive Evaluation of the Child With Intellectual Disability or Global Developmental Delays. Pediatrics, 134(3), e903–e918. https://doi.org/10.1542/peds.2014-1839 Olshen, A. B., Venkatraman, E. S., Lucito, R., &Wigler, M. (2004). Circular binary segmentation for the analysis of array‐based DNA copy number data. Biostatistics, 5(4), 557–572. https://doi.org/10.1093/biostatistics/kxh008 Pang, A. W. C., MacDonald, J. R., Yuen, R. K. C., Hayes, V. M., &Scherer, S. W. (2014). Performance of High-Throughput Sequencing for the Discovery of Genetic Variation Across the Complete Size Spectrum. G3: Genes|Genomes|Genetics, 4(1), 63 LP – 65. https://doi.org/10.1534/g3.113.008797 Pang, A. W., MacDonald, J. R., Pinto, D., Wei, J., Rafiq, M. A., Conrad, D. F., …Scherer, S. W. (2010). Towards a comprehensive structural variation map of an individual human genome. Genome Biology, 11(5), R52. https://doi.org/10.1186/gb-2010-11-5-r52 Petersen, M. C., Kube, D. A., &Palmer, F. B. (1998). Classification of developmental delays. Seminars in Pediatric Neurology, 5(1), 2–14. https://doi.org/https://doi.org/10.1016/S1071-9091(98)80012-0 Piotrowski, A., Bruder, C. E. G., Andersson, R., deStåhl, T. D., Menzel, U., Sandgren, J., …Dumanski, J. P. (2008). Somatic mosaicism for copy number variation in differentiated human tissues. Human Mutation, 29(9), 1118–1124. https://doi.org/10.1002/humu.20815 R. LUPSKI, J., &F. CHANCE, P. (2005). Hereditary Motor and Sensory Neuropathies Involving Altered Dosage or Mutation of PMP22: The CMT1A Duplication and HNPP Deletion. In Peripheral Neuropathy (Vol. 2, pp. 1659–1680). https://doi.org/10.1016/B978-0-7216-9491-7.50073-9 Rauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., Becker, C., …Trautmann, U. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics Part A, 140A(19), 2063–2074. https://doi.org/10.1002/ajmg.a.31416 Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., …Hurles, M. E. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454. https://doi.org/10.1038/nature05329 Rosenfeld, J. A., Mason, C. E., &Smith, T. M. (2012). Limitations of the human reference genome for personalized genomics. PloS One, 7(7), e40294–e40294. https://doi.org/10.1371/journal.pone.0040294 Schiffels, S., &Durbin, R. (2014). Inferring human population size and separation history from multiple genome sequences. Nature Genetics, 46(8), 919–925. https://doi.org/10.1038/ng.3015 Shaffer, L. G., &American College of Medical Genetics Professional Practice and Guidelines Committee. (2005). American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 7(9), 650–654. https://doi.org/10.109701.gim.0000186545.83160.1e Sharp, A. J., Cheng, Z., &Eichler, E. E. (2006). Structural Variation of the Human Genome. Annual Review of Genomics and Human Genetics, 7(1), 407–442. https://doi.org/10.1146/annurev.genom.7.080505.115618 Shevell, M. I. (1998). The evaluation of the child with a global developmental delay. Seminars in Pediatric Neurology, 5(1), 21–26. https://doi.org/https://doi.org/10.1016/S1071-9091(98)80014-4 Shevell, M, Ashwal, S., Donley, D., Flint, J., Gingold, M., Hirtz, D., …Sheth, R. D. (2003). Practice parameter: Evaluation of the child with global developmental delay. Neurology, 60(3), 367 LP – 380. https://doi.org/10.1212/01.WNL.0000031431.81555.16 Shevell, Michael. (2008). Global Developmental Delay and Mental Retardation or Intellectual Disability: Conceptualization, Evaluation, and Etiology. Pediatric Clinics of North America, 55(5), 1071–1084. https://doi.org/10.1016/j.pcl.2008.07.010 Shy, M. E., Scavina, M. T., Clark, A., Krajewski, K. M., Li, J., Kamholz, J., …Lupski, J. R. (2006). T118M PMP22 mutation causes partial loss of function and HNPP-like neuropathy. Annals of Neurology, 59(2), 358–364. https://doi.org/10.1002/ana.20777 Sousa, S. B., Abdul-Rahman, O. A., Bottani, A., Cormier-Daire, V., Fryer, A., Gillessen-Kaesbach, G., …Hennekam, R. C. M. (2009). Nicolaides–Baraitser syndrome: Delineation of the phenotype. American Journal of Medical Genetics Part A, 149A(8), 1628–1640. https://doi.org/10.1002/ajmg.a.32956 Stankiewicz, P., &Lupski, J. R. (2010). Structural Variation in the Human Genome and its Role in Disease. https://doi.org/10.1146/annurev-med-100708-204735 Sudmant, P. H., Mallick, S., Nelson, B. J., Hormozdiari, F., Krumm, N., Huddleston, J., …Eichler, E. E. (2015). Global diversity, population stratification, and selection of human copy-number variation. Science (New York, N.Y.), 349(6253), aab3761–aab3761. https://doi.org/10.1126/science.aab3761 Tan, R., Wang, Y., Kleinstein, S. E., Liu, Y., Zhu, X., Guo, H., …Zhu, M. (2014). An Evaluation of Copy Number Variation Detection Tools from Whole-Exome Sequencing Data. Human Mutation, 35(7), 899–907. https://doi.org/10.1002/humu.22537 Teo, S. M., Pawitan, Y., Ku, C. S., Chia, K. S., &Salim, A. (2012). Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics, 28(21), 2711–2718. https://doi.org/10.1093/bioinformatics/bts535 Terribas, E., Garcia-Linares, C., Lázaro, C., &Serra, E. (2013). Probe-Based Quantitative PCR Assay for Detecting Constitutional and Somatic Deletions in the NF1 Gene: Application to Genetic Testing and Tumor Analysis. Clinical Chemistry, 59(6), 928 LP – 937. https://doi.org/10.1373/clinchem.2012.194217 Tian, G., Jaglin, X. H., Keays, D. A., Francis, F., Chelly, J., &Cowan, N. J. (2010). Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway . Human Molecular Genetics, 19(18), 3599–3613. https://doi.org/10.1093/hmg/ddq276 VanHoudt, J. K. J., Nowakowska, B. A., Sousa, S. B., vanSchaik, B. D. C., Seuntjens, E., Avonce, N., …Vermeesch, J. R. (2012). Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nature Genetics, 44, 445. Retrieved from https://doi.org/10.1038/ng.1105 Velagaleti, G. V. N., Bien-Willner, G. A., Northup, J. K., Lockhart, L. H., Hawkins, J. C., Jalal, S. M., …Stankiewicz, P. (2005). Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. American Journal of Human Genetics, 76(4), 652–662. https://doi.org/10.1086/429252 Wilke, K., Duman, B., &Horst, J. (2000). Diagnosis of haploidy and triploidy based on measurement of gene copy number by real-time PCR. Human Mutation, 16(5), 431–436. https://doi.org/10.1002/1098-1004(200011)16:5<431::AID-HUMU8>3.0.CO;2-Z Wright, C. F., Fitzgerald, T. W., Jones, W. D., Clayton, S., Mcrae, J. F., Kogelenberg, M.Van, …Fitzpatrick, D. R. (2015). Genetic diagnosis of developmental disorders in the DDD study : a scalable analysis of genome-wide research data. 1305–1314. https://doi.org/10.1016/S0140-6736(14)61705-0 Wu, Y. L., Savelli, S. L., Yang, Y., Zhou, B., Rovin, B. H., Birmingham, D. J., …Yu, C. Y. (2007). Sensitive and Specific Real-Time Polymerase Chain Reaction Assays to Accurately Determine Copy Number Variations (CNVs) of Human Complement C4A, C4B, C4-Long, C4-Short, and RCCX Modules: Elucidation of C4 CNVs in 50 Consanguineous Subjects with Defined HLA Genotypes. The Journal of Immunology, 179(5), 3012 LP – 3025. https://doi.org/10.4049/jimmunol.179.5.3012 Xi, R., Lee, S., &Park, P. J. (2012). A survey of copy-number variation detection tools based on high-throughput sequencing data. Current Protocols in Human Genetics, (SUPPL.75), 1–15. https://doi.org/10.1002/0471142905.hg0719s75 Yan, J., Bi, W., &Lupski, J. R. (2007). Penetrance of craniofacial anomalies in mouse models of Smith-Magenis syndrome is modified by genomic sequence surrounding Rai1: not all null alleles are alike. American Journal of Human Genetics, 80(3), 518–525. https://doi.org/10.1086/512043 Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., …Eng, C. M. (2013). Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders. New England Journal of Medicine, 369(16), 1502–1511. https://doi.org/10.1056/NEJMoa1306555 Zarrei, M., Macdonald, J. R., Merico, D., &Scherer, S. W. (2015). A copy number variation map of the human genome. Nature Publishing Group, 16(3), 172–183. https://doi.org/10.1038/nrg3871 Zhang, F., Gu, W., Hurles, M. E., &Lupski, J. R. (2009). Copy number variation in human health, disease, and evolution. Annual Review of Genomics and Human Genetics, 10, 451–481. https://doi.org/10.1146/annurev.genom.9.081307.164217 Zhao, M., Wang, Q., Wang, Q., Jia, P., &Zhao, Z. (2013). Computational tools for copy number variation (CNV) detection using next-generation sequencing data: Features and perspectives. BMC Bioinformatics, 14(SUPPL11). https://doi.org/10.1186/1471-2105-14-S11-S1 VarSeq™ (Version 8.x) [Software]. Bozeman, MT: Golden Helix, Inc. Available from http://www.goldenhelix.com. Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), 2019.08.20. World Wide Web URL: https://omim.org/
|