|
[1] M. A. Lebedev and M. A. Nicolelis, “Brain-machine interfaces: Past, present and future,” Trends Neurosci., vol. 29, no. 9, pp 36–546, Sep.2006. [2] J. G. Webster, Medical instrumentation: application and design, Boston, Mass., USA: Houghton Mifflin, 2010. [3] A. Rothermel, L. Liu, N. P. Aryan, M. Fischer, J. Wuenschmann, S. Kibbel, and A. Harscher, “A CMOS chip with active pixel array and specific test features for subretinal implantation,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 290–300, Jan. 2009. [4] W.-M. Chen, et al., “A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 232–247, Jan. 2014. [5] C.-H. Cheng, et al., “A fully integrated closed-loop neuromodulation SoC with wireless power and bidirectional data telemetry for real-time human epileptic seizure control,” in Proc. Symp. VLSI Circuits. Dig. Tech. Papers, 2017, pp. C44–C45. [6] P. T. Bhatti and K. D. Wise, “A 32-site 4-channel high-density electrode array for a cochlear prosthesis,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2965–2973, Dec. 2006. [7] F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun, and H. Feng, “Cochlear implants: system design, integration, and evaluation,” IEEE Rev. Biomed. Eng., vol. 1, pp. 115–142, Dec. 2008. [8] F.-G. Zeng, S. J. Rebscher, Q.-J. Fu, H. Chen, X. Sun, L. Yin, L. Ping, H. Feng, S. Yang, S. Gong, B. Yang, H.-Y. Kang, N. Gao, and F. Chi, “Development and evaluation of the Nurotron 26-electrode cochlear implant system,” Hear. Res., vol. 322, pp. 188-199, Apr. 2015. [9] X.-H. Qian et al., “A bone-guided cochlear implant CMOS microsystem preserving acoustic hearing,” in Proc. Symp. VLSI Circuits. Dig. Tech. Papers, June 2017, pp. C46–C47. [10] P. E. Mohr, J. J. Feldman, and J. L. Dunbar, “The societal costs of severe to profound hearing loss in the United States,” Policy Anal. Brief H. Ser., vol. 2, no. 1, pp. 1–4, Apr. 2000. [11] Abbas PJ, Brown CJ. Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway. Hear Res. 2015;322:67–76. [12] P. Arauz, S. L., Atlas, M., Baumgartner, W. D., Caversaccio, M., Chester-Browne, R., et al. (2016). Electrically evoked compound action potentials are different depending on the site of cochlear stimulation. Cochlear Implants Int. 17, 251–262. doi: 10.1080/14670100.2016.1240427 [13] Pourjavid A, Adel Ghahraman M, Sedaie M, Emamjome HA, Mobedshahi F, Abbasalipour Kabirrah P: Amplitude changes of the electrically evoked compound action potential in children with cochlear implants: preliminary results. Iran J Pediatr 2011;21:390-394. [14] I. Akhoun, C.M. McKay, W. El-deredyElectrically evoked compound action potential artifact rejection by independent component analysis: technique validation Hear. Res., 302 (2013), pp. 60-73. [15] Adenis V., Gourévitch B., Mamelle E., Recugnat M., Stahl P., Gnansia D., Nguyen Y., Edeline JM. “ECAP growth function to increasing pulse amplitude or pulse duration demonstrates large inter-animal variability that is reflected in auditory cortex of guinea pig”, PLoS ONE, DOI: 10.1371/journal.pone.0201771. 2018. [16] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. Chandrakasan, "A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system," IEEE J. Solid-State Circuits, vol. 45, num. 4, pp. 804-816, Apr. 2010. [17] M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 1163–1168, Dec. 1987. [18] R. R. Harrison, C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958-63965, June 2003. [19] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, “A low-power integrated circuit for a wireless 100-electrode neural recording system,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 123-133, Jan. 2007. [20] X. Zou, W. S. Liew, L. Yao, and Y. Libin, "A 1V 22uW 32-channel implantable EEG recording IC," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 126-127, Feb. 2010. [21] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, "A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface," IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 731-745, Apr. 2011.
[22] F. Heer, S. Hafizovic, W. Franks, T. Ugniwenko, A. Blau, C. Ziegler,and A. Hierlemann, “CMOS microelectrode array for bidirectional interaction with neuronal networks,” Proceedings of the 31st European Solid-State Circuits Conference, pp. 335–338, Sept. 2005. [23] Anh Tuan Do, YungSern Tan, Chunkit Lam, Minkyu Je and Kiat Seng Yeo, “Low power implantable neural recording front-end,” in Proc. SoC Design Conf. (ISOCC), Jeju Island ,2012, pp. 387-390. [24] I.S. Jacobs and C.P. Bean, Fine particles, thin films and exchange anisotropy, New York, Schenectady. [25] D. Wheatley and T. Lehmann, "Electrically evoked compound action potential (ECAP) low-power low-noise CMOS amplifier," in Proc. Mid-West Symp. Circuits Syst., Montréal, Aug. 2007, pp. 41-4. [26] S. Pavan, N. Krishnapura and P. Sankar, “A power optimized continuous-time ΔΣ ADC for audio applications” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 351-360, Feb., 2008. [27] P.-W. Chen, “The Design of an 8-Channel Analog Front-End with Chopper Modulated Amplifier and Fully Differential Hybrid SAR ADC in 65nm CMOS Technology for EEG Acquisition,” National Chiao Tung University, unpublished master degree’s dissertation. [28] C. C Enz, F. Krummenacher, and E.A. Vittoz, “An Analytical MOS Transistor Model Valid in ALL Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications”, Analog Integrated Circuits and Signal Processing Journal on Low-Voltage and Low-Power Design 8, pp. 83-114, July 1995. [29] Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor, 3rd ed., Oxford University Press, 2011. [30] C.-Y. Wu, and C.-S. Ho, “An 8-channel Chopper-Stabilized Analog Front-End Amplifier for EEG Acquisition in 65-nm CMOS,” in Proc. Asian Solid-State Circuits Conf., Nov. 2015, pp. 1-4. [31] J. Rmírez-Angulo, R. G. Carvajal, J. A. Galán, and A. López-Martín, “A free but efficient low-voltage class-AB two-stage operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp.568–571, July 2006. [32] J.-P. Hou, “The Design of a Fully Differential Bypass Window Successive Approximation Register Analog-to-Digital Converter and an Electrode-Tissue Impedance Measurement Circuit for Cochlear Implants,” National Chiao Tung University, unpublished master degree’s dissertation. [33] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 µW 60 nV/rtHz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1534-1543, July 2011. [34] C.-Y. Wu, and C.-S. Ho, “An 8-channel Chopper-Stabilized Analog Front-End Amplifier for EEG Acquisition in 65-nm CMOS,” in Proc. Asian Solid-State Circuits Conf., pp. 1-4, Nov. 2015. [35] J. Yoo, et al., “An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 214-228, Jan. 2013. [36] T. Denison, K. Consoer, W. Santa, A. T. Avestruz, J. Cooley, and A. Kelly, “A 2 µW 100 nV/rtHz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
[37] P.-W. Chen, C.-W. Huang and C.-Y. Wu, “An 1.97μ, W/Ch 65nm-CMOS 8-Channel Analog Front-End Acquisition Circuit with Fast-Settling Hybrid DC Servo Loop for EEG Monitoring,” in Proc. Int. Symp. Circuits Syst. (ISCAS), Florence, May 2018, pp. 1-5. [38] M. Daliri and M. Maymandi-Nejad, “Ultra-low voltage common-mode voltage detector circuit,” IEEE Electron. Letters, vol. 44, no. 13, pp. 782-783, June 2008. [39] R. Wu, K. A. A. Makinwa, and J. H. Huijsing, “A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/f Noise corner and an AC-Couple Ripple Reduction Loop,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3232–3243, Dec. 2009. [40] Z. Luo, D. Ker, Y. Yang, and H. Cheng, “A digitally dynamic power supply technique for 16 channel 12 V tolerant stimulator realized in a 0.18 μm 1.8 V/3.3 V low voltage CMOS process,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 5, pp. 1087 1096, Oct. 2017. [41] C.-H. Chung, “The Design of two Low Power 10-Bit/12-Bit 100-KS/s Hybrid/Split-Capacitor SAR ADCs and an Electrode-Tissue Impedance Measurement Circuit for Implantable Medical SoC Integration,” National Chiao Tung University, unpublished master degree’s dissertation. [42] 307 training. [Online]. http://www.alab.ee.nctu.edu.tw/wpmu/ed307.
|