跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴珮萱
論文名稱:模型隱含的跳躍變異數與預期市場報酬
論文名稱(外文):Model-implied Jump Variance and Expected Market Return
指導教授:鄭宏文鄭宏文引用關係
指導教授(外文):CHENG,HUNG-WEN
口試委員:張晏誠駱建陵
口試委員(外文):CHANG,YEN-CHENGLO,CHIEN-LIN
口試日期:2018-06-20
學位類別:碩士
校院名稱:東吳大學
系所名稱:財務工程與精算數學系
學門:數學及統計學門
學類:其他數學及統計學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:23
中文關鍵詞:變異數
外文關鍵詞:Variance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用標準普爾500指數收益率,從1996年1月到2016年12月。資產價格過程遵循GARCH-Jump模型,跳躍成分被假設為正態高斯逆分佈(NIG)。 我們利用粒子濾波方法估計模型參數,然後分別計算模型隱含總方差(MTV),模型隱含正態方差(MNV)和模型隱含跳變方差(MJV)。 我們發現,只有MTV和MNV的預測值分別為4個月到12個月。 MJV陽性預測12個月是顯著的。 在MNV和MJV聯合後,MNV與未來4個月至12個月的市場收益呈顯著正相關。 我們的結論是,預測總變差的能力發生在跳躍部分。
This study uses S&P 500 index returns from January 1996 to December 2016. The asset price process follows GARCH-Jump model and the jump component is pretended to be normal inverse Gaussian (NIG) distribution. We make use of the particle filter method to estimate the parameters of our model and then calculate the model-implied total variance (MTV), model-implied normal variance (MNV), and model-implied jump variance (MJV), respectively. We find that there is positive significantly prediction from four months to twelve months with MTV only, and MNV only, respectively. MJV positive predictions for 12 months were significant. After MNV and MJV jointly, MNV has positive significantly relation with future market returns from four months to twelve months. Our conclusion is that the ability to predict total variation occurs in the jump part.

1 Introduction---------------------------------------------------------------------------p.1
2 Model---------------------------------------------------------------------------------p.3
3 Data and Estimation-------------------------------------------------------------------p.4
3.1 Data---------------------------------------------------------------------------------p.4
3.2 Particle Filter-------------------------------------------------------------------------p.4
3.3 Estimation---------------------------------------------------------------------------p.6
4 Empirical analysis----------------------------------------------------------------------p.7
4.1 Variable Definition--------------------------------------------------------------------p.7
4.2 Descriptive statistics for estimated variable-------------------------------------------p.7
4.3 Results------------------------------------------------------------------------------p.8
5 Conclusion----------------------------------------------------------------------------p.9 * Reference-----------------------------------------------------------------------------p.11
References
1.Abel, A.B., 1988. Stock Price Under Time-Varying Dividend Risk: An Exact Solution in an Infinite-Horizon General Equilibrium Model. Journal of Monetary Economics 22, 375-393.
2.Amihud, Y., 2002. Illiquidity and Stock Returns: Cross-Section and Time-Series Effects. Journal of Financial Markets 5, 31-56.
3.Barndorff-Nielsen, O.E. and N. Shephard, 2000. Econometric Analysis of Realised Volatility and its Use in Estimating Levy Based Non-Gaussian OU Type Stochastic Volatility Models. Manuscript, Nuffield College, Oxford, United Kingdom.
4.Bégin, J.-F., C. Dorion, and G. Gauthier, 2018. Idiosyncratic jump risk matters: evidence from equity returns and options. Working Paper, HEC Montéal.
5.Bollerslev, T., G. Tauchen, H. Zhou, 2009. Expected stock returns and variance risk premia. Review of Financial Studies 22, 4463-4492.
6.Bollerslev, Tim, Robert Engle and J.M. Wooldridge, 1988. A Capital Asset Pricing Model with Time Varying Covariances. Journal of Political Economy 96, 116-131.
7.Bollerslev, T., Todorov, V., and Xu, L, 2015. Tail risk premia and return predictability. Journal of Financial Economics 118, 113-134.
8.Carr, P., H. Geman, D. Madan, M. Yor, 2002. The fine structure of asset returns: an empirical investigate. Journal of Business 75, 305-332.
9.Christoffersen, P., S. Heston, and K. Jacobs, 2013. Capturing Option Anomalies with a Variance-Dependent Pricing Kernel. The Review of Financial Studies 26, 1963-2006.
10.Duffie, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine
jump-diffusions. Econometrical 68, 1343-1376. 11
11.Fama, E. and K. French, 1993. Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics 33, 3-56.
12.French, K. R., Schwert, G., & Stambaugh, R. F., 1987. "Expected Stock Returns and Volatility, " Journal of Financial Economics 19, 3-29.
13.Gordon, N.J., D.J. Salmond and A.F.M. Smith,1993. "A novel approach to nonlinear/non-Gaussian Bayesian state estimation, " In: IEE Proceedings on Radar and Signal Processing. Vol. 140, 107-113.
14.Heston, S., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud 6, 327-343.
15.Malik, S., and M. K. Pitt, 2011. Particle Filters for Continuous Likelihood Evaluation and Maximisation. Journal of Econometrics 165,190-209.
16.Merton, R.C., 1980. "On Estimating the Expected Return on the Market: An Exploratory Investigation, " Journal of Financial Economics 8, 323-361.
17.Ornthanalai, C., 2014. Lévy jump risk: Evidence from options and returns. Journal of Financial Economics 112, 69-90.
18.Pindyck,Robert S., 1981. Risk, inflation, and the stock market. American Economic Review 714, 335-351.
19.Poterba, James and Lawrence Summers, 1988. Mean Reversion in Stock Prices: Evidence and Implications. Journal of Financial Economics 27-60.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top