跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王思涵
研究生(外文):Si-Han Wang
論文名稱:水熱合成含氟磷酸鈣鍍層改善生物可降解性AZ80鎂合金之腐蝕阻抗與成骨細胞反應性研究
論文名稱(外文):The Improvement of Corrosion Resistance and Osteoblastic Cell Responses on Biodegradable AZ80 Magnesium Alloy with a Hydrothermally Synthesized Fluorine-substituted Calcium Phosphate Coating
指導教授:楊崇煒
指導教授(外文):Chung-Wei Yang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:131
中文關鍵詞:氟基磷灰石鍍層水熱法電化學腐蝕阻抗細胞培養
外文關鍵詞:fluorohydroxyapatitecoatingshydrothermalcorrosion resistancecell culture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金質輕、彈性模數與人體骨骼相當接近,作為硬組織取代材料而植入人體後可自然降解以避免二次手術。然而鎂合金活性高,在水溶液環境下容易腐蝕,基於氟基磷灰石(FHA)具有良好生物相容性、生物活性及引導骨生能力,所以本研究藉由水熱法在175ºC、2小時、飽和蒸汽壓環境下,直接合成FHA鍍層並析鍍於AZ80鎂合金表面,目的為在水熱合成過程中藉由F─離子的部分取代,以獲得更佳之FHA鍍層特性,並藉由FHA鍍層改善AZ80鎂合金之抗腐蝕性與細胞反應性。研究結果顯示:在模擬體液環境下進行浸泡測試以及電化學腐蝕測試,浸泡32天後FHA鍍層依然具有保護鎂合金之特性,F離子取代使鍍層結構穩定。極化曲線結果顯示表面披覆FHA鍍層有效提高AZ80鎂合金抗腐蝕能力,相較於無摻雜F之HA鍍層以及AZ80鎂合金腐蝕電位顯著提高。體外細胞培養試驗後發現經過24小時之MG63骨細胞顯著增生並貼附於鍍層表面,顯示水熱法披覆FHA鍍層於AZ80鎂合金之生物反應性佳,為具有潛力的硬組織植入物材料。

Lightweight magnesium (Mg) alloys have a low elastic modulus, which value very close to the human bone. Biodegradable Mg alloys can be used for medical hard tissue implants in orthopedic applications without revision surgery. However, Mg alloys are notably characterized by low corrosion resistance in physiological solutions. On the basis of the excellent biocompatibility, bioactive and osteoconductive properties of fluorohydroxyapatite (FHA), a FHA surface coating was hydrothermally synthesized on the AZ80 Mg alloy at 175ºC under a saturated steam pressure atmosphere. The aim of this present study is not only to obtain an optimal FHA coating with the substitution of F─ ions, but improving corrosion resistances and cell responses of the AZ80 Mg alloy. Experimental results show that AZ80 Mg alloy can be protected by the FHA coating even though immersion in the simulated body fluid after 32 days. FHA coating stability is improved after the substitution of F─ ions. In addition, the corrosion resistance of AZ80 Mg alloy can be effectively improved by the deposition of FHA coating. In vitro cell culture results represent that significant proliferation and adhesion of MG63 cells on the FHA-coated AZ80 Mg alloy is demonstrated after testing for 24 hours. It is recognized that FHA-coated AZ80 Mg alloy shows a good biological reponses, and it can be considered as an attractive, excellent hard tissue substitute material for further biomedical applications.

中文摘要................................................ ..i
Abstract................................................iii
誌謝......................................................v
總目錄...................................................vi
表目錄....................................................x
圖目錄...................................................xi
第一章 緒 論.............................................1
第二章 文獻回顧...........................................3
2-1 生醫材料(Biomaterials)................................3
2-1-1 金屬材料............................................4
2-1-2 高分子材料..........................................4
2-1-3 陶瓷材料............................................5
2-2 生物可降解之鎂合金植入材...............................7
2-3 鎂合金表面改質處理...................................10
2-4 氫氧基/氟基磷灰石....................................13
2-5 水熱法(Hydrothermal synthesis)......................17
第三章 實驗方法及步驟....................................30
3-1 鎂合金基材前處理.....................................30
3-2 水熱法合成氟基磷灰石鍍層..............................31
3-3 低掠角X-ray之相組成分析(Grazing-Incidence X-Ray Diffraction, GI-XRD).....................................32
3-4 傅立葉轉換紅外線光譜分析(Fourier-Transform Infrared Spectrometer, FT-IR).....................................32
3-5 化學分析光電子光譜分析(Electron Spectroscopy for Chemical Analysis, ESCA).................................33
3-6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) .........................................................34
3-7 SEM微觀形貌組織及EDS成分元素分析......................35
3-8 表面親疏水性測試(Surface wettability)................35
3-9 表面粗糙度量測(Surface roughness)....................36
3-10 奈米壓痕試驗(Nanoindentation tests).................36
3-11 鍍層貼附力強度測試..................................37
3-12 FHA/AZ80抗腐蝕性測試................................37
3-12-1 模擬體液浸泡測試(Immersion tests) .................37
3-12-2 動電位極化曲線測試(Electrochemical tests) .........38
3-13 體外細胞測試(in vitro tests)........................39
3-13-1 細胞培養及細胞附著型態觀察(Cell culture and morphology)..............................................39
3-13-2 細胞增生活性分析(Cell proliferation)..............41
第四章 結果與討論........................................53
4-1 水熱合成FHAp粉末相分析與形貌觀察......................53
4-1-1 FHAp之相組成分析...................................53
4-1-2 FHAp之特徵官能基分析...............................54
4-1-3 FHAp之表面形貌觀察.................................55
4-2 水熱合成FHA鍍層特性分析..............................56
4-2-1 相組成分析.........................................57
4-2-2 特徵官能基分析.....................................59
4-2-3 化學鍵結能分析.....................................60
4-2-4 TEM顯微影像與選區繞射分析...........................62
4-2-5 水熱合成鍍層表面與縱剖面形貌........................64
4-2-6 鍍層潤濕性測試與接觸角量測..........................66
4-3 FHA鍍層機械性質探討..................................68
4-3-1 FHA鍍層表面粗糙度..................................68
4-3-2 奈米壓痕硬度測試...................................69
4-3-3 FHA鍍層附著性評估..................................71
4-4 FHA鍍層的耐腐蝕特性研究..............................72
4-4-1 模擬體液浸泡測試...................................72
4-4-2 動電位極化曲線測試.................................75
4-5 FHA鍍層之體外細胞試驗................................76
4-5-1 細胞型態...........................................76
4-5-2 細胞增生測試.......................................78
第五章 結 論...........................................111
參考文獻 ................................................113
Extended Abstract.......................................125
簡 歷 ................................................131


參考文獻
[1]鄭玉峰、李莉(2009年,12月),生物醫用材料學,西安:西北工業大學出版社。
[2]王盈錦 (2002年,1月),生物醫學材料,臺北市:合記圖書出版社。
[3]崔福齋、馮慶玲(2004年,9月),生物材料學,北京:清華大學出版社。
[4]俞耀庭、張興樑(2000年,12月),生物醫用材料,天津 : 天津大學出版社。
[5]洪炳南(1983年,11月),生物材料在醫學上的應用,科學月刊,第167期。
[6]崔福齋、鄭傅林編著(2006年,8月),仿生材料,新北市:新文京開發出版股份有限公司。
[7]M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review”, Biomaterials, 27 (2006) 1728-1734.
[8]L. L. Hench, and J. M. Polak, “Third-generation biomedical materials”, Science, 295 (2002) 1014-1017.
[9]H. Waizy, J. M. Seitz, J. Reifenrath, A. Weizbauer, F. W. Bach, A. Meyer-Lindenberg, B. Denkena, and H. Windhagen, “Biodegradable magnesium implants for orthopedic applications”, J. Mater. Sci., 48 (2013) 39-50.
[10]Y. Chen, Z. Xu, C. Smith, and J. Sankar, “Recent advances on the development of magnesium alloys for biodegradable implants”, Acta Biomater., 10 (2014) 4561-4573.
[11]Z. H. Wen, C. J. Wu, C. S. Dai, and F. X. Yang, “Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid”, J. Alloys Compd., 488 (2009) 392-399.
[12]M. M. Avedesian, and Noranda Magnesium Inc., ASM Specialty Handbook-Magnesium and Magnesium Alloys, Mater. Information Society, (1999), pp.14-15.
[13]J. Nagels, M. Stokdijk, and P. M. Rozing, “Stress shielding and bone resorption in shoulder arthroplasty”, J. Shoulder Elbow Surg., 12 (2003) 35-39.
[14]G. L. Song, “Control of biodegradation of biocompatible magnesium alloys”, Corros. Sci., 49 (2007) 1696-1701.
[15]M. Speich, B. Bousquet, and G. Nicolas, “Reference values for ionized, complexed and protein-bound plasma magnesium in men and women”, Clin. Chem., 27 (1981) 246-248.
[16]B. A. Shaw, “Corrosion resistance of magnesium alloys”, in ASM Handbook, Vol. 13A, Corrosion: Fundamentals, Testing, and Protection, ASM International, Materials Park, OH, (2003), 692–696.
[17]J. Feng, Y. Chen, X. Liu, T. Liu, L. Zou, Y. Wang, Y. Ren, Z. Fan, Y. Lv, and M. Zhang, “In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties”, Mater. Chem. Phys., 143 (2013) 322-329.
[18] 陳振華,(2004年),鎂合金,北京:化學工業出版社。
[19]Y. S. Hong, G. D. Zhang, J. J. Huang, Y. Q. Hao, and H. J. Ai, “The role of bone induction of biodegradable magnesium alloy”, Acta Metall. Sinica, 44 (2008) 1035-1041.
[20]G. Song, A. Atrens, and M. Dargusch, “Influence of microstructure on the corrosion of diecast AZ91D”, Corros. Sci., 41 (1999) 249-273.
[21]A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer, and D. H. St. John, “Development of the as-cast microstructure in magnesium-aluminium alloys”, J. Light. Metals., 1 (2001) 61-72.
[22]A. K. Sharma, R. U. Rani, and S. M. Mayanna, “Thermal studies on electrodeposited black oxide coating on magnesium alloys”, Thermochimica Acta, 376 (2001) 67-75.
[23]A. Yamamoto, T. Ashida, Y. Kouta, K. B. Kim, S. Fukumoto, and H. Tsubakino, “Precipitation in Mg-(4-13)%Li-(4-5)%Zn ternary alloys”, Mater. Trans., 44 (2003) 619-624.
[24]O. Lunder, T. Kr. Aune, and K. Nisancioglu, “Effect of Mn additions on the corrosion behavior of mould-cast magnesium ASTM AZ91”, Corrosion, 43 (1987) 291-295.
[25]Y. Mizutani, S. J. Kim, R. Ichino, and M. Okido, “Anodizing of Mg alloys in alkaline solutions”, Surf. Coat. Technol., 169-170 (2003), 143-146.
[26]G. Song, A. Atrens, X. L. Wu, and B. Zhang, “Corrosion behavior of AZ10, AZ490 and AZ80 in sodium chloride”, Corros. Sci., 39 (1998) 1769-1791.
[27]S. F. Jr., C. Maffiotte, A. Samaniego, J. C. Galvan, and V. Barranco, “Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys”, Appl. Surf. Sci., 257 (2011) 8558-8568.
[28]B. Zberg, P. J. Uggowitzer, and J. F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Mater., 8 (2009) 887-891.
[29]F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, and C. J. Wirth, “In vivo corrosion of four magnesium alloys and the associated bone response”, Biomaterials, 26 (2005) 3557-3563.
[30]H. Hornberger, S. Virtanen, and A. R. Boccaccini, “Biomedical coatings on magnesium alloys-A review”, Acta Biomater., 8 (2012) 2442-2455.
[31]C. W. Yang, T. S. Liu, and L. H. Chen, “Hydrothermal crystallization effect on the improvement of erosion resistance and reliability of plasma-sprayed hydroxyapatite coatings” Thin Solid Films, 517 (2009) 5380-5385.
[32]H. X. Wang, S. K. Guana, X. Wang, C. X. Ren, L. G. Wang, “In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process”, Acta Biomater., 6 (2010) 1743-1748
[33]Y. W. Song, D. Y. Shan, and E. H. Han, “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application”, Mater. Lett., 62 (2008) 3276-3279.
[34]Y. Wang, W. Wei, and J. C. Gao, “Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating”, Mater. Sci. Eng. C, 29 (2009) 1311-1316.
[35]L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, “In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy”, Biomaterials, 30 (2009) 1512-1523.
[36]J. K. Lin, and J. Y. Uan, “Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3–/CO32– and corrosponding protection against corrosion by the coating”, Corros. Sci., 51 (2009) 1181-1188.
[37]B. Y. Yu, X. L. Pan, and J. Y. Uan, “Enhancement of corrosion resistance of Mg-9wt.%Al-1wt.%Zn alloy by a calcite (CaCO3) conversion hard coating”, Corros. Sci., 52 (2010) 1874-1878.
[38]J. K. Lin, K. L. Jeng, and J. Y. Uan, “Crystallization of a chemical conversion layer that forms on AZ91D magnesium alloy in carbonic acid”, Corros. Sci., 53 (2011) 3832-3839.
[39]Y. Y. Zhu, G. M. Wu, Y. H. Zhang, and Q. Zhao, “Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31”, Appl. Surf. Sci., 257 (2011) 6129-6137.
[40]J. Y. Uan, J. K. Lin, Y. S. Sun, W. E. Yang, L. K. Chen, and H. H. Huang, “Surface coatings for improving the corrosion resistance and cell adhesion of AZ91D magnesium alloy through environmentally clean methods”, Thin Solid Films, 518 (2010) 7563-7567.
[41]C. W. Yang, “Development of hydrothermally synthesized hydroxyapatite coatings on metallic substrates and Weibull’s reliability analysis of its shear strength”, Inter. J. Appl. Ceram. Technol., 12 (2015) 282-293.
[42]G. K. Toworfe, R. J. Composto, I. M. Shapiro, and P. Ducheyne, “Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers”, Biomaterials, 27 (2006) 631-642.
[43]X. N. Gua, W. Zhang, Y. Cheng, and Y. F. Zhang, “A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate”, Acta Biomater., 5 (2009) 2790-2799.
[44]Y. W. Song, D. Y. Shan, E. H. Han, “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomedical application”, Mater Lett., 62 (2008), 3276-3279.
[45]J. W. McCutchen, J. P. Collier, and M. B.Mayer, “Osseointegration of titanium implants in total hip arthroplasty”, Clin. Orthop., 261 (1990) 114-125.
[46]S. Shadanbaz, and G. J. Dias, “Calcium phosphate coatings on magnesium alloys for biomedical applications: A review”, Acta Biomater., 8 (2012) 20-30.
[47]J. C. Elliott, “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates”, Elsevier Science, Amsterdam, (1994), 74.
[48]F. C. M. Driessens, “Probable phase composition of the mineral in bone”, Z Naturforsch C, 35 (1980), 357-362.
[49]H. Dasarathy, C. Riley, and H. D. Coble, “Analysis of apatite deposits on substrates”, J. Biomed. Mater. Res., 27 (1993) 477-482.
[50]S. Kannan, J. H. G. Rocha, S. Agathopoulos, and J. M. F. Ferreira, “Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones”, Acta Biomater., 3 (2007) 243-249.
[51]N. Johari, M. H. Fathi, and M. A. Golozar, “The effect of fluorine content on the mechanical properties of poly (ε-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone-tissue engineering”, Ceram. Inter., 37 (2011) 3247-3251.
[52]F. C. M. Driessens, “Formation and stability of calcium phosphates in relation to the phase composition of the mineral in clarified tissue”, in “Bioceramic of Calcium Phosphate”, edited by K. de Groot, CRC Press Inc., Boca Raton, Florida, (1983), 1-32.
[53]P. Adam, A. Nebeliung, and M. Vogt, “Verhalten von mit Tricalciumphosphat beschichteten Titanimplantaten bei der Behandlung mit Wasser von 80°C (Behavior of titanium implants coated with tricalcium phosphate during treatment with water at 80°C)”, Sprechsaal, 121(10) (1988) 941-944.
[54]鄭玉峰、李莉(2009年,12月),生物醫用材料學,西安:西北工業大學出版社,P.154-189。
[55]J. Li, L. Cao, Q. Fan, Y. Song, S. Zhang, T. Tang, C. Zhao, F. Zhang, and X. Zhang, “In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable MgZn alloy”, Biomaterials., 31 (2010) 5782-5788.
[56]T. Goto, I. Y. Kim, K. Kikuta, and C. Ohtsuki, “Hydrothermal synthesis of composites of well-crystallized hydroxyapatite and poly(vinyl alcohol) hydrogel”, Mater. Sci. Eng. C, 32 (2012) 397-403.
[57]P. Yin, F. F. Feng, Ting Lei b, and X. C. Jian, “Colloidal-sol gel derived biphasic FHA/SrHA coatings”, Surf. Coat. Technol., 207 (2012) 608-613
[58]W. Hu, J. Ma, J. L. Wang, and S. M. Zhang, “Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles”, Mater. Sci. Eng. C , 32 (2012) 2404-2410.
[59]D. Laurencin, N. Almora-Barrios, N. H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J. C. Knowles, R. J. Newport, A. Wong, Z. Gan, and M. E. Smith, “Magnesium incorporation into hydroxyapatite”, Biomaterials, 32 (2011) 1826-1837.
[60]M. Wei, J. H. Evans, T. Bostroom, and L. Grondahl, “Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite”, J. Mater. Sci.: Mater. Med., 14 (2003) 311-320.
[61]Y. Wang, S. Zhang, Z. Zeng, L. L. Ma, W. Weng, W. Yang, and M. Qian, “Osteoblastic cell response on fluoridated hydroxyapatite coatings”, Acta Biomater., 3 (2007) 191-197.
[62]M. Sundfeldt, M. Widmark, A. Wennerberg, J. Karrholm, C. B. Johansson, and L. V. Carlsson, “Does sodium fluoride in bone cement affect implant fixation? Part I: Bone tissue response, implant fixation and histology in nine rabbits”, J. Mater. Sci.: Mater. Med., 13 (2002) 1037-1043.
[63]K. Lau, C. Goodwin, M. Arias, S. Mohan, and D. J. Baylink, “Bone cell mitogenic action of fluoroaluminate and aluminum fluoride but no that of sodium fluoride involves upregulation of the insulin-like growth factor system”, Bone, 30 (2002) 705-711.
[64]J. Harrison, A. J. Melville, J. S. Forsythe, B. C. Muddle, A. O. Trounson, K. A. Gross, and R. Mollarda, “Sintered hydroxyfluorapatites — IV: the effect of fluoride substitutions upon colonization of hydroxyapatite by mouse embryonic stem cells”, Biomaterials, 25 (2004) 4977-4986.
[65]L. M. Rodriguez-Lorenzo, J. N. Hart, and K. A. Gross, “Influence of fluorine in the synthesis of apatites. Syntheses of solid solutions of hydroxyl-fluorapatite”, Biomaterials, 24 (2003) 3777-3785.
[66]H. Qu, and M. Wei, “The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior”, Acta Biomater., 2 (2006) 113-119.
[67]K. Cheng, S. Zhang, and W. Weng, “The F content in sol-gel derived FHA coatings: an XPS study”, Surf. Coat. Technol., 198 (2005) 237-241.
[68]Y. Huang, Q. Ding, X. Pang, S. Han, and Y. Yan, “Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings”, Appl. Surf. Sci., 282 (2013) 456-462.
[69]J. Wang, Y. Chao, Q. Wan, Z. Zhu, H. Yu, “Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition”, Acta Biomater., 5 (2009) 1798-1807.
[70]Y. Song, S. Zhang, J. Li, C. Zhao, and X. Zhang, “Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior”, Acta Biomater., 6 (2010) 1736-1742.
[71]H. R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, R. Ebrahimi-Kahrizsangi, and M. Medraj, “In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg-Ca alloys for biomedical applications”, Ceram. Inter., 40 (2014) 7971-7982.
[72]J. W. Guo, S. Y. Sun, Y. M. Wang, Y. Zhou, D. Q. Wei, and D. C. Jia, “Hydrothermal biomimetic modification of microarc oxidized magnesium alloy for enhanced corrosion resistance and deposition behaviors in SBF”, Surf. Coat. Technol., 269 (2015) 183-190.
[73]R. Rojaee, M. Fathi, and K. Raeissi, “Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments”, Appl. Surf. Sci., 285P (2013) 664-673.
[74]O. Kaygili, and S. Keser, “Sol-gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites”, Mater. Lett., 141 (2015) 161-164.
[75]S. V. Dorozhkin, “Calcium orthophosphate coatings on magnesium and its biodegradable alloys”, Acta Biomater., 10 (2014) 2919-2934.
[76]趙冰,杜榮歸,林昌健,2003,氫氧基磷灰石生物陶瓷材料的製備及其新進展,功能材料,第2期,P.126-130
[77]M. Tomozawa, and S. Hiromoto, “Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values”, Acta Biomater., 59 (2011) 355-363.
[78]M. Tomozawa, and S. Hiromoto, “Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium”, Appl. Surf. Sci., 257 (2011) 8253-8257.
[79]K. K. Li, B. Wang, B, Yan, and W. Lu, “Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: in vitro degradation behavior”, Chin. Sci. Bull., 57 (2012) 2319-2322.
[80]S. Hiromoto, and M. Tomozawa, “Corrosion behavior of magnesium with hydroxyapatite coatings formed by hydrothermal treatment”, Mater. Trans., 51 (2010) 2080-2087.
[81]S. Hiromoto, and M. Tomozawa, “Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution”, Surf. Coat. Technol., 205 (2011) 4711-4719.
[82]T. Onoki, “Chapter 3 Porous Apatite Coating on Various Titanium Metallic Materials via Low Temperature Processing”, in “Biomaterials Science and Engineering”, edited by R. Pignatello, (2011).
[83]M. Tomozawa, S. Hiromoto, “Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values”, Acta Mater., 59 (2011) 355-363.
[84]T. Onoki, K. Hosoi, T. Hashida, “New technique for bonding hydroxyapatite ceramics and titanium by hydrothermal hot-pressing method.”, Scripta Mater., 52 (2005) 767-770.
[85]T. Onoki, K. Hosoi, T. Hashida, “Joining hydroxyapatite ceramics and titanium alloys by hydrothermall method.”, Key Eng. Mater., 240-242 (2003) 571-574.
[86]D. Shi, “Biomaterials and Tissue Engineering”, Springer, Berlin, Heidelberg, Printed in Germany, (2004), 5-8.
[87]黃志良,王大偉,劉羽,氫氧基磷灰石(HA)製備方法及其研究進展,武漢化工學院學報,23 (2001) 49-53.
[88]M. Yoshimura, and H. Suda, “Hydrothermal Processing of Hydroxyapatite: Past, Present and Future”, in: “Hydroxyapatite and Related Materials”, edited by P. W. Brown, and B. Constanz, CRC Press Inc, Boca Raton, Florida, (1994) , pp.45-72.
[89]M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, and R. H. Doremus, “Hydroxyapatite synthesis and characterization in dense polycrystalline form”, J. Mater, Sci., 11 (1976) 2027-2035.
[90]T. Kijima, and M. Tsutsumi, “Preparation and thermal properties of dense poly-crystalline oxyhydroxyapatite”, J. Am. Ceram. Soc., 62 (1979) 455-460.
[91]G. de With, H. J. A. Vandijk, N. Hattu, and K. Prijs, “Preparaction microstructure and mechacnical properties of dense polycrystalline hydroxyapatite”, J. Mater. Sci., 16 (1981) 1592-1598.
[92]J. S. Earl, D. J. Wood, and S. J. Milne, “Hydrothermal synthesis of hydroxyapatite”, J. Phys.: Conf. Ser., 26 (2006) 26-71.
[93]R. Zhu, R. Yu, J. Yao, D. Wang, and J. Ke, “Morphology control of hydroxyapatite through hydrothermal process”, J. Alloys Compd., 457 (2008) 555-559.
[94]M. Yoshimura, and K. Byrappa, “Hydrothermal processing of materials: past, present and future”, J. Mater. Sci., 43 (2008) 2085-2103.
[95]T. Onoki, and T. Hashida, “New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique”, Surf. Coat. Technol., 200 (2006) 6801-6807.
[96]D. Liu, K. Savino, and M. Z. Yates, “Coating of hydroxyapatite filme on metal substrates by seeded hydrothermal deposition”, Surf. Coat. Technol., 205 (2011) 3975-3986.
[97]Y. Zhu, Q, Zhao, Y. H. Zhang, and G. Wu, “Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water”, Surf. Coat. Technol., 206 (2012) 2961-2966.
[98]李姝,董寅生,盛曉波,郭超,儲成林,醫用AZ31鎂合金表面複合膜層的製備及其性能表徵,29 (2010) 41-44
[99]L. Chang, L. Tian, W. Liu, and X. Duan, “Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment”, Corros. Sci., 72 (2013) 118-124.
[100] L. Montazeri, J. Javadpour, M. A. Shokrogozar, S. Bonakdar and S. Javadian, “Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatitenano-size powders”, Biomed. Mater., 5 (2010) 045004.
[101]L. L. Hench, “Bioactive glassed and glass-ceramics: A perspective”, in “CRC Handbook of Bioactive Ceramics”, edited by T.Yamamuro, L. L. Hench, J. Wilson, Vol. I, CRC Press Inc, Boca Raton, Florida, (1990), pp.7-23.
[102]張克從,張樂惠,晶體生長,北京:科學出版社,1981,P.230~280。
[103]R. A. Terpstra, P. Bennema, P. Hartman and C. F. Woensdregt, W.G. Perdok, and M.L. Senechal, F faces of apatite and its morphology: Theory and observation., J. Cryst. Growth., 78 (1986) 468-478.
[104]B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (3rd ed.), Prentice Hall, New Jersey, (2001), p.170.
[105]K. Cheng, G. Han, W. Weng, H. Qu, P. Du, G. Shen, J. Yang, and J. M. F. Ferreira, “Sol-gel derived fluoridated hydroxyapatite films.”, Mater. Res. Bull, 38 (2003) 89-97.
[106]P. Taddei, A. Tinti, M. Reggiani, P. Monti, and C. Fagnano, “In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study”, J. Molecular Structure, 651-653 (2003) 427-431.
[107]C. H. Amberg, H. C. Luk, and K. P. Wagstaff, “The fluoridation of nonstoichiometric calcium hydroxyapatite, an infrared study.” J. Chem., 52 (1974) 4001-4006.
[108]H. Ye, X. Y. Liu, and H. P. Hong, “Cladding of titanium/fluorapatite composites onto Ti6Al4V substrate and the in vitro behaviour in the simulated body fluid”, Appl. Surf. Sci., 255 (2009) 8126-8134.
[109]M. J. Larsen and S. J. Jensen, “Experiments on the initiation of calcium fluoride formation with reference to the solubility of dental enamel and brushite.” , Arch Oral Biol., 39 (1994) 23-27.
[110]L. M. Rodriguez-Lorenzo, J. N. Hart, and K. A. Gross, “Influence of fluorine in the synthesis of apatites. Synthesis of solidsolutions of hydroxy-fluorapatite.”, Biomaterials, 24 (2003) 3777-3785.
[111]Berzina-Cimdina Liga and Natalija Borodajenko, “6 Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy”, in “Infrared Spectroscopy - Materials Science, Engineering and Technology”, edited by Prof. Theophanides Theophile, (2012), 123-148 .
[112]A. Boyd, M. Akay, and B. J. Meenan, “Influence of target surface degradation on the properties of r.f. magnetron-sputtered calcium phosphate coatings”, Surf. Interface Anal., 35 (2003) 188-198.
[113]R. E. Kahrizsangi, B. N. Tabrizi, and A. Chami, “Synthesis and characterization of fluorapatiteetitania (Fap-TiO2) nanocomposite via mechanochemical process”, Solid State Sci., 12 (2010) 1645-1651.
[114]J. H. Park, D. Y. Lee, K. T. Oh, and Y. K. Lee, “Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid”, Mater. Lett., 60 (2006) 2573-2577.
[115]J. L. Ong, L. C. Lucas, G. N. Raikar, J. J. Weimer, and J. C. Gregory, “Surface characterization of ion-beam sputter-deposited Ca-P coatings after in vitro immersion”, Colloids and Surfaces, 87 (1994) 151-162.
[116]K. Cheng, S. Zhang, W. Weng, K. A. Khor, S. Miao, and Y. Wang, “The adhesion strength and residual stress of colloidal-sol gel derived β-Tricalcium-Phosphate/Fluoridated-Hydroxyapatite biphasic coatings”, Thin Solid Films, 516 (2008) 3251-3255
[117]K. Cheng, S. Zhang, W. Weng, and X. Zeng, “The interfacial study of sol-gel-derived fluoridated hydroxyapatite coatings”, Surf. Coat. Technol., 198 (2005) 242-246.
[118]A. Joseph Nathanael, D. Mangalaraj, S. I. Hong, Y. Masuda, Y. H. Rhee, and H. W. Kim, “Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method”, Mater. Chem. Phys., 137 (2013) 967-976.
[119]E. O. López, A. L. Rossi, B. S. Archanjo, R. O. Ospina, A. Mello, and A. M. Rossi, “Crystalline nano-coatings of fluorine-substituted hydroxyapatite produced by magnetron sputtering with high plasma confinement”, Surf. Coat. Technol., 264 (2015), 163-174.
[120]B. Viswanath and N. Ravishankar, “Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone.”, Biomaterials, 29 (2008), 4855-4863.
[121]W. Suchanek, and M. Yoshimura, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants.”, J. Mater. Res., 13 (1998) 94-117.
[122]J. H. Park, Y. K. Lee, K. M. Kim, and K. N. Kim, “Bioactive calcium phosphate coating prepared on H2O2-treated titanium substrate by electrodeposition.”, Surf. Coat. Technol., 195 (2005) 252-257.
[123]M. S. Shojai, M. T. Khorasani, E. D. Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite in diverse structures”, Acta Biomater., 9 (2013) 7591-7621.
[124]T. L. Sun, G. J. Wang, L. Feng, B. Q. Liu, Y. M. Ma, and L. Jiang, “Reversible swiching between superhydrophilicity and superhydrophobicity”, Angewandte Chemie-Inter. Edition, 43 (2004) 357-360.
[125]M. Sarraf, , E. Zalnezhad, A.R. Bushroa, A.M.S. Hamouda, A.R. Rafieerad, and B. Nasiri-Tabrizi, “Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti-6Al-4V”, Ceram. Inter., 41 (2015) 7952-7962.
[126]Z. Zhen, T. F. Xi, and Y. F. Zheng, “A review on in vitro corrosion performance test of biodegradable metallic materials”, Trans. Nonferrous Met. Soc. China, 23 (2013) 2283-2293.
[127]L. H. He, O. C. Standard,T. T. Y. Huang, B. A. Latella, and M. V. Swain,“Mechanical behaviour of porous hydroxyapatite”, Acta Biomater., 4 (2008) 577-586.
[128]M. H. Fathi, and E. M. Zahrani, “Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite”, J. Cryst. Growth., 311 (2009) 1392-1403.
[129]J. M. Zhang, C. J. Lin, Z. D. Feng, and Z. W. Tian, “Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in-situ pH-microsensor technique”, J. Electroanalytical Chemistry, 452 (1998) 235-240.
[130]X. Lin, L. Tan, Q. Zhang, K. Yang, Z. Hu, J. Qiu, and Y. Cai, “The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating.”, Acta Biomater., 9 (2013) 8631-8642.
[131]E. C. Meng, S. K. Guan, H. X. Wang, and L. G. Wang, “Effect of electrodeposition modes on surface characteristics and corrosion properties of fluorine-doped hydroxyapatite coatings on Mg-Zn-Ca alloy”, Appl. Surf. Sci., 257 (2011) 4811-4816.
[132]H. R. Bakhsheshi-Rad, M. H. Idris, and M. R. Abdul-Kadir, “Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg-Ca-Zn alloy”, Surf. Coat. Technol., 222 (2013) 79-89.
[133]H. T. Chen, C. J. Chung, T.C. Yang, I. P. Chiang, C.H. Tang, K. C. Chen, and J. L. He, “Osteoblast growth behavior on micro-arc oxidized β-titanium alloy”, Surf. Coat. Technol., 205 (2010) 1624-1629.
[134]L. Xu, F. Pan, G. Yu , L. Yang, E. Zhang, and K. Yang , “In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy”, Biomaterials, 30 (2009) 1512-1523.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top