跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/04 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陸宇綸
研究生(外文):Lu, Yu-Lun
論文名稱:以基因本體論篩選管家基因進行基因表現量正規化分析
論文名稱(外文):Gene Expression Normalization by GO based Housekeeping Gene Selection
指導教授:白敦文
指導教授(外文):Pai, Tun-Wen
口試委員:白敦文許輝煌張顥騰
口試委員(外文):Pai, Tun-WenHsu, Hui-HuangChang, Hao-Teng
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:29
中文關鍵詞:基因本體論RNA定序分析管家基因比較基因體學基因表現量差異
外文關鍵詞:Gene OntologyRNA-seqHousekeeping geneComparative genomicsDifferential gene expression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:520
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
高通量轉錄體定序分析技術提供一種有效方法可以揭示蛋白質的生物功能與基因表現之間的關係。為鑑定不同實驗設計所產生基因表現量的差異資訊,首要面對的挑戰是如何選擇正確的正規化方法進行校正不同實驗資料集。本論文提出一個全新的正規化技術,藉由分析生物實驗關鍵字、基因本體論註解資訊、同源管家基因資訊及不同時期基因表現的穩定度等資訊,進行正確篩選一組適當的管家基因群以協助生物學家進行跨樣本資料集的正規化依據。主要概念是探索與實驗關鍵字距離最遠的基因本體論標籤,並從具有該標籤註解的候選管家基因群挑選一組在不同時期的基因表現量數據中仍可擁有較低變異係數的同源管家基因群。因此,本系統可以自動挑選一組與該實驗最無關連性的管家基因群做為正規化的重要依據。本論文使用標準轉錄體定序測試資料集進行系統分析,分析結果證明若採取不同管家基因群組或忽略不同發育時期基因表現的穩定度分析,該正規化的技術將會造成明顯不同的結論。本論文所提出的方法經由與傳統最受歡迎的正規化技術進行比較,不論在靈敏度或特異性都優於其他傳統的正規化方法。研究成果證明選擇合適管家基因群組作為跨資料組的正規化校正機制,確實能改善並解決基因表現量的差異性分析。
High throughput RNA-seq analysis provides a powerful tool for revealing relationships between gene expression level and biological function of proteins. To discover differentially expressed genes among various RNA-seq datasets obtained from different experimental designs, an appropriate normalization method for calibrating multiple experimental datasets is the first challenging problem. In this thesis, a novel normalization method to facilitate biologists in selecting a set of suitable housekeeping genes for inter-sample normalization is proposed. The approach is achieved by adopting user defined experimentally related keywords, gene ontology (GO) annotations, orthologous housekeeping genes, and stability of housekeeping genes at different time periods. By identifying the most distanced GO terms from query keywords and selecting housekeeping gene candidates with low coefficients of variation among different spatio-temporal datasets, the proposed method can automatically enumerate a set of functionally irrelevant housekeeping genes for practical normalization. By employing benchmark RNA-seq datasets to evaluate our developed system, the results showed that different selections of housekeeping gene set would lead to strong impact on differential gene expression analysis. The compared results have shown that our proposed method outperformed other traditional approaches in terms of both sensitivity and specificity. The proposed mechanism of selecting appropriate housekeeping genes for inter-dataset normalization is robust and accurate for differential expression analyses.
摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES IV
LIST OF TABLES IV
LIST OF ABBREVIATION V
1 INTRODUCTION 1
2 MATERIAL 3
3 METHOD 5
3.1 SYSTEM FLOWCHART 5
3.2 GO DISTANCE CALCULATION 7
3.3 HOUSEKEEPING GENE STABILITY 9
3.4 HOUSEKEEPING GENE SELECTION AND NORMALIZATION 10
3.5 HOUSEKEEPING CONTIG SELECTION AND NORMALIZATION FOR NONE-MODAL SPECIES 14
4 RESULTS 16
4.1 STATISTIC RESULTS 16
4.2 PUBLIC RNA-SEQ DATASET EVALUATION 18
5 AN ON-LINE WEB SYSTEM 24
6 CONCLUSIONS 26
REFERENCE 27

1. Kevil, C.G., et al., An improved, rapid Northern protocol. Biochem Biophys Res Commun, 1997. 238(2): p. 277-9.
2. Freeman, W.M., S.J. Walker, and K.E. Vrana, Quantitative RT-PCR: pitfalls and potential. Biotechniques, 1999. 26(1): p. 112-22, 124-5.
3. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): p. 467-70.
4. Velculescu, V.E., et al., Serial analysis of gene expression. Science, 1995. 270(5235): p. 484-7.
5. Marguerat, S. and J. Bahler, RNA-seq: from technology to biology. Cell Mol Life Sci, 2010. 67(4): p. 569-79.
6. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009. 10(1): p. 57-63.
7. Robinson, M.D. and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol, 2010. 11(3): p. R25.
8. Dillies, M.A., et al., A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform, 2012.
9. Howe, E.A., et al., RNA-Seq analysis in MeV. Bioinformatics, 2011. 27(22): p. 3209-10.
10. Anders, S. and W. Huber, Differential expression analysis for sequence count data. Genome Biol, 2010. 11(10): p. R106.
11. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008. 5(7): p. 621-8.
12. Storey, J.D. and R. Tibshirani, Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol, 2003. 224: p. 149-57.
13. Bullard, J.H., et al., Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 2010. 11: p. 94.
14. Thellin, O., et al., Housekeeping genes as internal standards: use and limits. J Biotechnol, 1999. 75(2-3): p. 291-5.
15. Chen, C.M., et al., Gene expression rate comparison for multiple high-throughput datasets. IET Syst Biol, 2013. 7(5): p. 135-42.
16. Vandesompele, J., et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002. 3(7): p. RESEARCH0034.
17. de Jonge, H.J., et al., Evidence based selection of housekeeping genes. PLoS One, 2007. 2(9): p. e898.
18. de Kok, J.B., et al., Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest, 2005. 85(1): p. 154-9.
19. Wu, X., et al., Variation of expression levels of seven housekeeping genes at different life-history stages in Porphyra yezoensis. PLoS One, 2013. 8(4): p. e60740.
20. Beissbarth, T. and T.P. Speed, GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 2004. 20(9): p. 1464-5.
21. Zheng, Q. and X.J. Wang, GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res, 2008. 36(Web Server issue): p. W358-63.
22. Flicek, P., et al., Ensembl 2013. Nucleic Acids Res, 2013. 41(Database issue): p. D48-55.
23. Gene Ontology, C., Gene Ontology annotations and resources. Nucleic Acids Res, 2013. 41(Database issue): p. D530-5.
24. Chang, C.W., et al., Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis. PLoS One, 2011. 6(7): p. e22859.
25. Parkinson, H., et al., ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res, 2007. 35(Database issue): p. D747-50.
26. Resnik, P., Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research, 1999. 11: p. 95-130.
27. Lord, P.W., et al., Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics, 2003. 19(10): p. 1275-83.
28. Jiang, J.J. and D.W. Conrath, Semantic similarity based on corpus statistics and lexical taxonomy, in Proc. of the Int'l. Conf. on Research in Computational Linguistics. 1997. p. 19--33.
29. Mistry, M. and P. Pavlidis, Gene Ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics, 2008. 9: p. 327.
30. Supek, F., et al., REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 2011. 6(7): p. e21800.
31. Du, Z., et al., G-SESAME: web tools for GO-term-based gene similarity analysis and knowledge discovery. Nucleic Acids Res, 2009. 37(Web Server issue): p. W345-9.
32. Wang, J.Z., et al., A new method to measure the semantic similarity of GO terms. Bioinformatics, 2007. 23(10): p. 1274-81.
33. del Pozo, A., F. Pazos, and A. Valencia, Defining functional distances over gene ontology. BMC Bioinformatics, 2008. 9: p. 50.
34. Xu, Y., et al., A novel insight into Gene Ontology semantic similarity. Genomics, 2013. 101(6): p. 368-75.
35. Martin, D., et al., GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol, 2004. 5(12): p. R101.
36. Mazandu, G.K. and N.J. Mulder, A topology-based metric for measuring term similarity in the gene ontology. Adv Bioinformatics, 2012. 2012: p. 975783.
37. Rhee, S.Y., et al., Use and misuse of the gene ontology annotations. Nat Rev Genet, 2008. 9(7): p. 509-15.
38. Kinsella, R.J., et al., Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford), 2011. 2011: p. bar030.
39. Marioni, J.C., et al., RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008. 18(9): p. 1509-17.
40. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010. 26(1): p. 139-40.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top