|
1. Kevil, C.G., et al., An improved, rapid Northern protocol. Biochem Biophys Res Commun, 1997. 238(2): p. 277-9. 2. Freeman, W.M., S.J. Walker, and K.E. Vrana, Quantitative RT-PCR: pitfalls and potential. Biotechniques, 1999. 26(1): p. 112-22, 124-5. 3. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): p. 467-70. 4. Velculescu, V.E., et al., Serial analysis of gene expression. Science, 1995. 270(5235): p. 484-7. 5. Marguerat, S. and J. Bahler, RNA-seq: from technology to biology. Cell Mol Life Sci, 2010. 67(4): p. 569-79. 6. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009. 10(1): p. 57-63. 7. Robinson, M.D. and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol, 2010. 11(3): p. R25. 8. Dillies, M.A., et al., A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform, 2012. 9. Howe, E.A., et al., RNA-Seq analysis in MeV. Bioinformatics, 2011. 27(22): p. 3209-10. 10. Anders, S. and W. Huber, Differential expression analysis for sequence count data. Genome Biol, 2010. 11(10): p. R106. 11. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008. 5(7): p. 621-8. 12. Storey, J.D. and R. Tibshirani, Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol, 2003. 224: p. 149-57. 13. Bullard, J.H., et al., Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 2010. 11: p. 94. 14. Thellin, O., et al., Housekeeping genes as internal standards: use and limits. J Biotechnol, 1999. 75(2-3): p. 291-5. 15. Chen, C.M., et al., Gene expression rate comparison for multiple high-throughput datasets. IET Syst Biol, 2013. 7(5): p. 135-42. 16. Vandesompele, J., et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002. 3(7): p. RESEARCH0034. 17. de Jonge, H.J., et al., Evidence based selection of housekeeping genes. PLoS One, 2007. 2(9): p. e898. 18. de Kok, J.B., et al., Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest, 2005. 85(1): p. 154-9. 19. Wu, X., et al., Variation of expression levels of seven housekeeping genes at different life-history stages in Porphyra yezoensis. PLoS One, 2013. 8(4): p. e60740. 20. Beissbarth, T. and T.P. Speed, GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 2004. 20(9): p. 1464-5. 21. Zheng, Q. and X.J. Wang, GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res, 2008. 36(Web Server issue): p. W358-63. 22. Flicek, P., et al., Ensembl 2013. Nucleic Acids Res, 2013. 41(Database issue): p. D48-55. 23. Gene Ontology, C., Gene Ontology annotations and resources. Nucleic Acids Res, 2013. 41(Database issue): p. D530-5. 24. Chang, C.W., et al., Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis. PLoS One, 2011. 6(7): p. e22859. 25. Parkinson, H., et al., ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res, 2007. 35(Database issue): p. D747-50. 26. Resnik, P., Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research, 1999. 11: p. 95-130. 27. Lord, P.W., et al., Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics, 2003. 19(10): p. 1275-83. 28. Jiang, J.J. and D.W. Conrath, Semantic similarity based on corpus statistics and lexical taxonomy, in Proc. of the Int'l. Conf. on Research in Computational Linguistics. 1997. p. 19--33. 29. Mistry, M. and P. Pavlidis, Gene Ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics, 2008. 9: p. 327. 30. Supek, F., et al., REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 2011. 6(7): p. e21800. 31. Du, Z., et al., G-SESAME: web tools for GO-term-based gene similarity analysis and knowledge discovery. Nucleic Acids Res, 2009. 37(Web Server issue): p. W345-9. 32. Wang, J.Z., et al., A new method to measure the semantic similarity of GO terms. Bioinformatics, 2007. 23(10): p. 1274-81. 33. del Pozo, A., F. Pazos, and A. Valencia, Defining functional distances over gene ontology. BMC Bioinformatics, 2008. 9: p. 50. 34. Xu, Y., et al., A novel insight into Gene Ontology semantic similarity. Genomics, 2013. 101(6): p. 368-75. 35. Martin, D., et al., GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol, 2004. 5(12): p. R101. 36. Mazandu, G.K. and N.J. Mulder, A topology-based metric for measuring term similarity in the gene ontology. Adv Bioinformatics, 2012. 2012: p. 975783. 37. Rhee, S.Y., et al., Use and misuse of the gene ontology annotations. Nat Rev Genet, 2008. 9(7): p. 509-15. 38. Kinsella, R.J., et al., Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford), 2011. 2011: p. bar030. 39. Marioni, J.C., et al., RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008. 18(9): p. 1509-17. 40. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010. 26(1): p. 139-40.
|