跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳曼菁
研究生(外文):CHEN,MAN-CHING
論文名稱:閃火點大於100℃物質之水溶液 閃火點消失行為探討
論文名稱(外文):Study of the Non-flash Behavior of Aqueous-organic Solutions with Substance of Flash Point Being Greater Than 100℃
指導教授:廖宏章廖宏章引用關係
指導教授(外文):LIAW, HORNG-JANG
口試委員:陳政任陳強琛廖宏章游逸駿蔡曉雲
口試日期:2019-06-12
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:閃火點火災爆炸危害預測模式惰化點
外文關鍵詞:fash pointthe upper water levelflash point prediction modelinerization point
相關次數:
  • 被引用被引用:0
  • 點閱點閱:798
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
易燃性水溶液在製程操作上或是易燃性液體外洩,利用水來稀釋藉此消除火災爆炸的危害,但是無法確認易燃性危害是否已消除,因而閃火點成為重要參考依據。本研究以水稀釋易燃性液體進行閃火點試驗,並探討雙成分有機水溶液於氣相燃燒中惰化效應。實驗中發現當水比例達到一定濃度時,出現閃火點測不到的現象,與Malcolm等人研究有相同狀況。
針對有機水溶液達無閃火點時之預測是利用改良過廖之閃火點消失預測模式,利用該預測模式來估算有機水溶液不具易燃性之最小含水量及最高閃火點,並以本研究的實驗數據進行驗證。實驗所使用的物質有:水+乙二醇(1,2-ethanediol(EG))、水+己內醯胺(Caprolactam(CPL))、水+ 1,4 -丁二醇(1,4-butanediol)、水+2-吡咯烷酮(2-pyrrolidinone)及水+1,2-丙二醇(1,2-propanediol)五組雙成分有機水溶液,該五種物質皆具有高閃火點、低揮發性的特性。
由於2014年廖等人提出閃火點消失預測模式只適用於預測閃火點低、揮發性高的物質,本研究修正了惰化點下水的液相組成(x),將液相中水的組成設為未知數;活性係數也從(γ→1)進行修正,使其能適用在所有的雙成分有機水溶液系統中。研究結果顯示此模式能夠成功找出有機水溶液不具易燃性之最小含水量及最高閃火點,因此可將此模式用來判別有機水溶液混合物是否具有易燃性危害。



While aqueous-organic mixtures or the leakage of flammable liquids are letting out in the process, it usually dilute water to eliminate fire and explosion hazard. However, this couldn’t be sure that flammability hazard of flammable liquids is eliminated. Therefore, flash point is become the important reference. In the study, the flash point test is to dilute flammable liquids by water, and explore binary aqueous – organic solution under the inerting effects of the lower flammability limit of the gas phase. We found it can not to flash in the test. And the trend is the same as study of Malcolm et al.
In the study, we selected substances included water+1,2-ethanediol and water+caprolactam and water+1,4-butanediol and water+2-pyrrolidinone and water+1,2-propanedil, all of them have higher flash points and lower volatility. And we improved the deficiency of the flash point prediction model of Liaw et al., and it was used to predict the upper water level and the maximum flash point of aqueous–organic solution not to flash, and use the experimental data as proof.
In 2014, the deficiency of the flash point prediction model of Liaw et al. was only applied in predicting lower flash point and higher volatility, so we improved the liquid phase composition of water and the activity coefficient of water at inerization point, let it apply in all binary aqueous–organic solutions. The results show that this model can successfully forecast the upper water level and the maximum flash point of aqueous–organic solution not to flash. Therefore, such a model can be used to determine whether the organic aqueous mixture is flammable or not.

摘要I
Abstract II
誌謝IV
目錄V
表目錄VII
圖目錄IX
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第貳章 文獻回顧 3
第一節 閃火點 3
第二節 閃火點之測試方法 3
第三節 燃燒界限 6
第四節 氣液平衡方程式 8
第五節 閃火點預估模式 9
2-5.1 Affen與McLaren的預測模式 9
2-5.2 White、Beyler、Fulper和Lenonard的預測模式 9
2-5.3 有機水溶液閃火點預測模式 10
2-5.4 Liaw和Chiu雙成分有機水溶液的閃火點預測模式 11
第六節 活性係數 12
2-6.1 van Laar、Margules、Wilson、NRTL、UNIQUAC、original UNIFAC、UNIFAC-Dortmund方程式 12
第七節 惰化曲線 17
第八節 閃火點消失現象 18
第九節 Liaw閃火點消失預測模式 21
第參章 研究方法與材料 25
第一節 雙成分有機水溶液閃火點預測 25
第二節 惰化點預測模式 26
第三節 實驗物質 28
第四節 儀器設備與測試方法 29
3-4.1 HFP360–Pensky Martens 測試方法 30
第肆章 結果與討論 34
第一節 各項參數 34
第二節 實驗結果與模擬值 42
4-2.1 Water(1)+1,2-ethanediol(2) 42
4-2.2 Water(1)+Caprolactam(2) 44
4-2.3 Water(1)+1,4-butanediol(2) 46
4-2.4 Water(1)+2-pyrrolidinone(2) 48
4-2.5 Water(1)+1,2-propanediol(2) 50
第伍章 結論 51
第陸章 參考文獻 52
附錄一 57


[1]R. W. Garland and M. O. Malcolm, "Evaluating vent manifold inerting requirements: Flash point modeling for organic acid‐water mixtures," Process Safety Progress, vol. 21, no. 3, pp. 254-260, 2002.
[2]H.-J. Liaw, "The condition for aqueous–organic mixtures not to flash," Procedia Engineering, vol. 84, pp. 280-284, 2014.
[3]H. J. Liaw, et al, "A mathematical model for predicting the flash point of binary solutions," Journal of Loss Prevention in the Process Industries, vol. 15, no. 6, pp. 429-438, 2002.
[4]H. J. Liaw, Y.Y. Chiu, "The prediction of the flash point for binary aqueous-organic solutions," Journal of hazardous material, vol. 101, no. 2, pp. 83-106, 2003.
[5]H. J. Liaw, et al, "Binary liquid solutions exhibiting minimum flash-point behavior," Journal of Loss Prevention in the Process Industries, vol. 16, no. 3, pp. 173-186, 2003.
[6]R. W. Garland and M. O. Malcolm, "Evaluating vent manifold inerting requirements: Flash point modeling for organic acid‐water mixtures," Process Safety, vol. 21, no. 4, pp. 254-260, 2002.
[7]H.-J. Liaw, C.-C. Chen, C.-H. Chang, N.-K. Lin, and C.-M. Shu, "Model To Estimate the Flammability Limits of Fuel–Air–Diluent Mixtures Tested in a Constant Pressure Vessel," Industrial & Engineering Chemistry Research, vol. 51, no. 6, pp. 2747-2761, 2012.
[8]廖宏章, "可燃性液體火災爆炸性質之分析," 環保月刊, vol. 10, pp. 77-85, 2002.
[9]ASTM. D93, "Standard test method for flash point by Pensky Martens closed cup tester," American Society for Testing and Materials,, 2008.
[10]ASTM. D56, "Standard test method for flash point by Tag closed cup tester," American Society for Testing and Materials, vol. West Conshohocken, 1999.
[11]S. Shane, Q. Hee, "Hazardous waste analysis," Rockville, MD:Government Institutes, 1999.
[12]OSHA, "Flammable and Combustible Liquids," 29 CFR 1910.106.
[13]H. Le Chatelier, "Estimation of firedamp by flammability limits," Annals of Mines, vol. 19, no. 8, pp. 388-395, 1891.
[14]呂德寶, "化工熱力學," 鼎茂圖書出版有限公司, 1997.
[15]W. A. Affens and G. W. McLaren, "Flammability properties of hydrocarbon solutions in air," Journal of Chemical and Engineering Data, vol. 17, no. 4, pp. 482-488, 1972.
[16]D. White, C. L. Beyler, C. Fulper, and J. Leonard, "Flame spread on aviation fuels," Fire Safety Journal, vol. 28, no. 1, pp. 1-31, 1997.
[17]D. A. Crowl and J. F. Louvar, Chemical process safety: fundamentals with applications. Pearson Education, 2001.
[18]H.-J. Liaw and Y.-Y. Chiu, "A general model for predicting the flash point of miscible mixtures," Journal of hazardous materials, vol. 137, no. 1, pp. 38-46, 2006.
[19]B. E. Poling, J. M. Prausnitz, and J. P. O'connell, The properties of gases and liquids. Mcgraw-hill New York, 2001.
[20]A. Fredenslund, R. L. Jones, and J. M. Prausnitz, "Group‐contribution estimation of activity coefficients in nonideal liquid mixtures," AIChE Journal, vol. 21, no. 6, pp. 1086-1099, 1975.
[21]U. Weidlich and J. Gmehling, "A modified UNIFAC model. 1. Prediction of VLE, hE, and. gamma.. infin," Industrial & engineering chemistry research, vol. 26, no. 7, pp. 1372-1381, 1987.
[22]R. C. Reid, J. M. Prausnitz, and B. E. Poling, "The properties of gases and liquids," 1987.
[23]J. V. Laar, "Vapour pressure of binary mixtures," Z. phys. Chem, vol. 72, pp. 723-751, 1910.
[24]G. M. Wilson, "Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing," Journal of the American Chemical Society, vol. 86, no. 2, pp. 127-130, 1964.
[25]H. Renon and J. M. Prausnitz, "Local compositions in thermodynamic excess functions for liquid mixtures," AIChE journal, vol. 14, no. 1, pp. 135-144, 1968.
[26]D. S. Abrams and J. M. Prausnitz, "Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems," AIChE Journal, vol. 21, no. 1, pp. 116-128, 1975.
[27]J. Gmehling, U. Onken, D. Behrens, and R. Eckermann, Vapor-liquid equilibrium data collection: Aqueous-organic systems (no. Part 1). Dechema Frankfurt, Germany, 1977.
[28]H.-J. Liaw, "The maximum flammable content for binary aqueous-organic mixtures not to flash and their maximum flash points," AIChE Journal, vol. 64, no. 1, pp. 263-271, 2018.
[29]A. International, Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. ASTM International, 2015.
[30]J. Gmehling, U. Onken, and W. Arlt, Vapour-liquid equilibrium data collection (no. Part 1). Dechema Frankfurt, 1977.
[31]N. Kamihama, H. Matsuda, K. Kurihara, K. Tochigi, and S. Oba, "Isobaric vapor–liquid equilibria for ethanol+ water+ ethylene glycol and its constituent three binary systems," Journal of Chemical & Engineering Data, vol. 57, no. 2, pp. 339-344, 2012.
[32]C.-W. Chang, T.-L. Hsiung, C.-P. Lui, and C.-H. Tu, "Densities, surface tensions, and isobaric vapor–liquid equilibria for the mixtures of 2-propanol, water, and 1,2-propanediol," Fluid Phase Equilibria, vol. 389, pp. 28-40, 2015/03/15/ 2015.
[33]M. L. van Delden, N. J. Kuipers, and A. B. de Haan, "Liquid− liquid equilibria and physical properties of the quaternary systems water+ caprolactam+ ammonium sulfate+ benzene and toluene," Journal of Chemical & Engineering Data, vol. 49, no. 6, pp. 1760-1770, 2004.
[34]C. Yang et al., "Vapor–liquid equilibria for three binary systems of N-methylethanolamine, N-methyldiethanolamine, and ethylene glycol at P=(40.0, 30.0, and 20.0) kPa," Journal of Chemical & Engineering Data, vol. 58, no. 8, pp. 2272-2279, 2013.
[35]J. Gmehling, P. Rasmussen, and A. Fredenslund, "Vapor-liquid equilibriums by UNIFAC group contribution. Revision and extension. 2," Industrial & Engineering Chemistry Process Design and Development, vol. 21, no. 1, pp. 118-127, 1982.
[36]X. Gong, Y. Lu, Y. Zhang, M. Gao, and G. Luo, "Liquid− liquid equilibria of the quaternary system water+ caprolactam+ 1-octanol+ ammonium sulfate," Journal of Chemical & Engineering Data, vol. 52, no. 3, pp. 851-855, 2007.
[37]J. Gmehling, J. Li, and M. Schiller, "A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties," Industrial & Engineering Chemistry Research, vol. 32, no. 1, pp. 178-193, 1993.
[38]J. Gmehling, R. Wittig, J. Lohmann, and R. Joh, "A modified UNIFAC (Dortmund) model. 4. Revision and extension," Industrial & engineering chemistry research, vol. 41, no. 6, pp. 1678-1688, 2002.
[39]G. Xingchu, L. Yangcheng, and L. Guangsheng, "Distribution coefficient of caprolactam and methyl caprolactam using benzene or toluene as extractants: Experiments and prediction," Chinese Journal of Chemical Engineering, vol. 15, no. 4, pp. 463-467, 2007.
[40]B. García, R. Alcalde, J. M. Leal, and J. S. Matos, "Solute− solvent interactions in amide− water mixed solvents," The Journal of Physical Chemistry B, vol. 101, no. 40, pp. 7991-7997, 1997.
[41]O. Ferreira, E. A. Brignole, and E. A. Macedo, "Phase equilibria in sugar solutions using the A-UNIFAC model," Industrial & engineering chemistry research, vol. 42, no. 24, pp. 6212-6222, 2003.
[42]M. Catté, C.-G. Dussap, and J.-B. Gros, "A physical chemical UNIFAC model for aqueous solutions of sugars," Fluid Phase Equilibria, vol. 105, no. 1, pp. 1-25, 1995/03/15/ 1995.
[43]C. L. Yaws, The Yaws handbook of vapor pressure: Antoine coefficients. Gulf Professional Publishing, 2015.
[44]J. Schmelzer and J. Pusch, "Phase equilibria in binary systems containing N-monosubstituted amides and hydrocarbons," Fluid Phase Equilibria, vol. 110, no. 1, pp. 183-196, 1995/09/01/ 1995.
[45]H. Yue, Y. Zhao, X. Ma, and J. Gong, "Ethylene glycol: properties, synthesis, and applications," Chemical Society Reviews, vol. 41, no. 11, pp. 4218-4244, 2012.
[46]I. Smallwood, Handbook of organic solvent properties. Butterworth-Heinemann, 2012.
[47]SIGMA-ALDRICH. (2016). "SAFETY DATA SHEET," no. ε-Caprolactam. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/c2204?lang=en®ion=TW
[48]MERCK. (2018). "SAFETY DATA SHEET," no.epsilon-Caprolactam. Available: http://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-802800?Origin=PDP
[49]C. L. Yaws, Handbook of Chemical Compound Data for Process Safety. Elsevier, 1997.
[50]G. H. Thomson and A. H. Larsen, "DIPPR: Satisfying industry data needs," Journal of Chemical & Engineering Data, vol. 41, no. 5, pp. 930-934, 1996.
[51]MilliporeSigma. (2017). "SAFETY DATA SHEET," no.2-Pyrrolidone. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/p74370?lang=en®ion=TW
[52]SIGMA-ALDRICH. (2016). "SAFETY DATA SHEET,"no.2-Pyrrolidone. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/p74370?lang=en®ion=TW
[53]SIGMA-ALDRICH. (2019). "SAFETY DATA SHEET,"no.1,2-propanediol. Available: https://www.sigmaaldrich.com/catalog/product/sial/398039?lang=en®ion=TW



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top