跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許芷瑄
研究生(外文):Chih-hsuan Hsu
論文名稱:以多壁奈米碳管及石墨烯修飾TiO2奈米顆粒製備光電極應用於染料敏化太陽能電池
論文名稱(外文):Application of Multi-wall Carbon Nanotube and Graphene modified TiO2 nanoparticle to Dye-sensitized Solar Cells
指導教授:段葉芳段葉芳引用關係
口試委員:陳宏亦楊勝俊林岩錫
口試日期:2011-06-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:107
中文關鍵詞:染料敏化太陽能電池溶膠凝膠法多壁奈米碳管石墨烯奈米二氧化鈦
外文關鍵詞:Dye-sensitized solar cellsSol-Gel methodMulti-wall carbon nanotube(MWCNT)GrapheneTiO2 nanoparticles
相關次數:
  • 被引用被引用:1
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在染料敏化太陽能電池(DSSC)中奈米TiO2薄膜光電極是影響染料敏化太陽能電池光電特性的重要因素。本研究主要改善染料敏化太陽能電池元件中之工作電極暗電流的產生,所以在TiO2工作電極中添加導電性良好之材料,進而增進此太陽能電池的效率與穩定性。使用溶膠凝膠法製備二氧化鈦奈米顆粒,並在製備過程中分別添加多壁奈米碳管及石墨烯兩種導電性良好的材料,可以增加DSSC之短路電流密度(short-circuit current density),減少暗電流發生進而有效提升DSSC的光電轉換效率。使二氧化鈦奈米顆粒披覆在多壁奈米碳管(MWCNT)上;薄片狀石墨烯覆蓋在二氧化鈦奈米顆粒表面上,製備出 TiO2-CNTs和TiO2-Graphenes奈米複合粉末,作為染料敏化太陽能電池(DSSC)中之光電極材料。在DSSC光電極的製備上使用旋轉塗佈法將P25 TiO2奈米顆粒混合TiO2-CNTs、TiO2-Graphenes複合粉末塗佈在ITO導電玻璃上。經過太陽能光電轉換效率的測試結果顯示,添加TiO2-CNTs和TiO2-Graphenes奈米複合粉末可以增加電池短路電流密度(Isc),加入TiO2-CNTs奈米複合粉末讓DSSC的光電轉換效率從原先之3.5928 %最高提升到5.242 %,加入TiO2-Graphenes奈米複合粉末最高提升到5.619 %。

The nanocrystalline-TiO2 film is a crucial factor of photoelectrode performances in dye-sensitized solar cell. In this study, we decreased dark current generation in the working electrode of the dye-sensitized solar cell. By adding good conductivity materials into TiO2 working electrode and thereby enhanced the efficiency and stability of solar cells.We used sol-gel method to prepare nanoscale titanium dioxide (TiO2). During the preparation we added multi-walled carbon nanotubes and graphene that are well-conductive materials, since CNT and graphene can increase the short-circuit current density of DSSC therefore reduce the dark current generation, thus the light-to-electricity conversion effectively of DSSC can be effectively raised. We used TiO2-CNTs, TiO2 nanoparticles coated on the surface of the muti-wall carbon nanotubes, and TiO2-Graphene composite nanopowders, the graphene sheets covered heavily with TiO2 layer, as the photoelectrode materials for dye-sensitized solar cells (DSSC). The DSSC photoelectrodes were prepared by spin coating on transparent conductive Indium tin oxide (ITO) substrates. According to light-to-electricity conversion efficiency test, adding TiO2-CNTs and TiO2-Graphenes nano composite powders could increase the values of short-circuit current density (Isc) obviously, and also improved the light-to-electricity conversion efficiency from 3.5928 % to 5.242% by TiO2-CNTs and 5.619% by TiO2-Graphenes.

摘要 I
英文摘要 II
致謝 IV
目錄 Ⅸ
表目錄 XII
圖目錄 XIV
第一章 前言 1
1.1緒論 1
1.2太陽能電池簡介 2
1.3研究動機與目的 7
第二章 文獻回顧 8
2.1染料敏化太陽電池簡介 8
2.1.1染料敏化太陽能電池之結構 8
2.1.2降低染料敏化太陽能電池效率的因素 10
2.1.3染料敏化太陽能電池光電轉換評價性能參數 12
2.2二氧化鈦 16
2.3奈米碳管及石墨烯簡介 18
2.3.1奈米碳管 18
2.3.2石墨烯 23
2.4溶膠-凝膠法 27
2.5染料敏化太陽能電池的組成結構 29
2.5.1半導體工作電極 29
2.5.2染料光敏化劑 31
2.5.3氧化還原電解質 33
2.5.4對電極 36
第三章實驗設備和方法 37
3.1實驗藥品與儀器 37
3.2實驗流程 40
3.2.1奈米碳管官能基化流程 40
3.2.2石墨烯官能基化流程 41
3.2.3溶膠凝膠法製備TiO2-MWCNT/TiO2-Graphene奈米複合粉末 42
3.2.4染料敏化太陽能電池之製備 43
3.3儀器應用介紹 47
第四章 結果與討論 53
4.1純化及官能基化MWCNT/Graphene的分析 53
4.1.1 能量散佈分析儀(EDX) 53
4.1.2 紅外光譜分析(FT-IR) 57
4.1.3 掃描電子顯微鏡分析(SEM) 59
4.1.4分散度測試 60
4.2 TiO2-MWCNT/TiO2-Graphene複合奈米粉末之材料分析 61
4.2.1 能量散佈分析儀(EDX) 62
4.2.2 X光繞射分析儀(XRD) 62
4.2.3 紅外光譜分析(FT-IR) 66
4.2.4 掃描電子顯微鏡分析(SEM) 68
4.3 TiO2 (Degussa P25) 工作電極之表面分析 69
4.4多壁奈米碳管/石墨烯-二氧化鈦光電極之性質分析 73
4.4.1 薄膜表面型態裂縫影響分析 73
4.4.2 紫外光-可見光吸收光譜分析(UV/Vis) 76

4.5製備雙層複合光電極 79
4.5.1 薄膜表面型態裂縫影響分析 79
4.5.2 紫外光-可見光吸收光譜分析(UV/Vis) 81
4.6染料敏化太陽能電池性能之分析 83
4.6.1 添加TiO2奈米複合粉末對DSSC效率之影響 83
4.6.2 交流阻抗分析染料敏化太陽能電池 91
第五章 結論 97
參考文獻 99



[1]B. O’Regan, M and Grätzel, Nature, no.353, 1991, pp.737.
[2]M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Valchopoulos, M. Grätzel, J. Am. Chem. Soc, no.115, 1993, pp.6382.
[3]日本特許廳總務部技術調查課,2006。
[4]M. Grätzel, J. Photochem, Photobio. A., no.164, 2004 , pp.3.
[5]A. Hagfeldt and M. Grätzel, Chem. Re, no.95, 1995, pp.49–68.
[6]M. Grätzel, Current Opinion in Colloid and Interface Science, no.4, 1999, pp. 314–321.
[7]Cahen et al., J.Phys.Chem. B, no.104, 2000, pp.2053–2059.
[8]A. Fujishima et al., Sol. Energy Mater. Sol. Cells, no.81, 2004, pp.197–203.
[9]Shogo Nakade, Yohei Makimoto, Wataru Kubo, Takayuki Kitamur, Yuji Wada, and Shozo Yanagida, J. Phys, Chem. B, no.109, 2005, pp.3480–3487.
[10]L. Brus, Phys. Rev. B﹐no.53, 1996, pp.4649–4656.
[11]Cahen et al., J. Phys. Chem. B, no.104, 2000, pp.2053–2059.
[12]J. Bisquert, J. Phys. Chem. B, no.106, 2002, pp.325–333.
[13]Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, Langmuir, no.19, 2003, pp.3572.
[14]Park, N.-G. L., J. v. d.; Frank, A. J., J. Phys. Chem. B, no.104, 2000, pp.8989-8994.
[15]J. R. Macdonald, and W. R. Kenan, Impedance Spectroscopy, 1987.
[16]S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 1991, pp. 56.
[17]S. Iijima, T. Ichihashi,. Y. Ando, “Pentagons, heptagons and negative curvature in graphite microtubule growth”, Nature 356, 1992, pp.776.
[18]S. C. Tsang, Y. K Chen, P. J .F Harris, M .L .H Green, “A simple chemical method of opening and filling carbon nanotubes”, Nature 372, 1994, pp.159.
[19]L. S. K. Pang, J. D. Saxby, S.P. Chatfield, “Thermogravimetric analysis of carbon nanotubes and nanoparticles”, Journal of Physical Chemistry 97, 1993, pp.6941.
[20]R. S. Ruoff, D. C. Lorent, Physical Review 33, 1995, pp.925.
[21]S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes”, Physical Review Letters 84, 2000, pp.4613.
[22]M. A. Osman, D. Srivastava, “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnolory 12, 2001, pp.21.
[23]D. L. Carrol, Ph. Redlich, X. Blase, J. C. Charlier, S. P. M. Ajayan, S. Roth and M. Rühle, "Effects of Nanodomain Formation on the Electronic Structure of Doped Carbon Nanotubes," Phys. Rev. Lett., Vol. 81, 1998, pp.2332-2335.
[24]A. J. Stone, D. J. Wales, "Theoretical studies of icosahedral C60 and some related species," Chemical Physics Letters, Vol. 128, 1986, pp. 501-503.
[25]L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes” Synthetic Metals 103, 1999, pp.2492.
[26]L. S. K. Pang, J. D. Saxby, S.P. Chatfield, “Thermogravimetric analysis of carbon nanotubes and nanoparticles”, Journal of Physical Chemistry 97, 1993, pp.6941.
[27]S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature 362, 1993, pp.520.
[28]H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon, “Chromatographic purification and properties of soluble single-walled carbon nanotubes”, Journal of the American Chemical Society 123, 2001, pp.11673.
[29]A. R. Harutyunyan, B. K Pradhan, J. Chang, G. Chen, and P. C. Eklund, “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles” Journal of Physical Chemistry 106, 2002, pp.8671.
[30]K. Hernadi, A. Siska, L. Thie-Nga, L. Forro, and Kiricsi, “Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes”, Solid State Ionics, 141, 2001, pp.203.
[31]Y. H. Li, S. Wang, Z. Luan, J. Ding, and C. Xu, “Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes”, Carbon, 41, 2003, pp.1057.
[32]Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei, Chem. Phys. Lett., 357, 2002, pp.263.
[33]G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem. Commum., “Controlled adsorption of carbon nanotubes on chemically modified electrode arrays”, 10, 1998, pp.584.
[34]石立節, "奈米碳管純化前後表面特性之變化",國立中央大學環境工程研究所碩士論文 , 2005.
[35]K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, and C. B. “Huffman, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters 282, 1998, pp.429.
[36]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-191, 2007.
[37]J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nat Nano, vol. 3, pp. 206-209, 2008.
[38]T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, "Extraordinary Mobility in Semiconducting Carbon Nanotubes," Nano Letters, vol. 4, pp. 35-39, 2004.
[39]C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 18, 2008.
[40]I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, "Mechanical properties of suspended graphene sheets," 2007, pp. 2558-2561.
[41]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, October 22, 2004.
[42]D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Letters, vol. 0, 2009.
[43]X. Wu, Y. Pei, and X. C. Zeng, "B2C Graphene, Nanotubes, and Nanoribbons," Nano Letters, vol. 9, pp. 1577-1582, 2009.
[44]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of grapheme films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[45]X. Wang, L. Zhi, and K. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., vol. 8, pp. 323-327, 2008.
[46]T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, "Molecular Doping of Graphene," Nano Lett., vol. 8, pp. 173-177, 2008.
[47]Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, pp. 073104-3, 2005.
[48]W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
[49]G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat Nano, vol. 3, pp. 270-274, 2008.
[50]S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nat Nano, vol. 4, pp. 217-224, 2009.
[51]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, p. 1171245, May 7, 2009.
[52]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, May 26 2006.
[53]P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, "Graphene-Based Liquid Crystal Device," Nano Lett., vol. 8, pp. 1704-1708, 2008.
[54]Y. Si and E. T. Samulski, "Synthesis of Water Soluble Graphene," Nano Lett., vol. 8, pp. 1679-1682, 2008.
[55]V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nat Nano, vol. 4, pp. 25-29, 2009.
[56]P. Yi, S. Dong-Xia, and G. Hong-Jun, "Formation of graphene on Ru(0001) surface," Chinese Physics, vol. 16, pp. 3151-3153, 2007.
[57]H. Z. Yi Pan, Dongxia Shi, Jiatao Sun, Shixuan Du, Feng Liu, Hong-jun Gao,, "Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001)," Advanced Materials, vol. 9999, p. NA, 2008.
[58]S. Marchini, S. Gunther, and J. Wintterlin, "Scanning tunneling microscopy of graphene on Ru(0001)," Physical Review B (Condensed Matter and Materials Physics), vol. 76, pp. 075429-9, 2007.
[59]A. Giraudeau, F. –R. F. Fan, A. J. Bard, J. Am. Chem. Soc, no.16, 1980, pp.102.
[60]I. Bedjat, P. V. Kamat, J. Phys. Chem, no.99, 1995, pp.9182–9188.
[61]R. W. Fessenden, P. V. Kamat, J. Phys. Chem, no.99, 1995, pp.12902-12906.
[62]P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub﹐J. Am. Chem. Soc, no.126, 2004, pp.3868–3879.
[63]A. L. Linsebigler, G. Lu, J. T. Yates, ”Photocatalysis on TiO2 surface: Principles, mechanisms, and selscted results, ”Chemical Reviews, vol.95,no. 3,1995, pp.735-758
[64]Yu. D. Dolmatov, Priklad, Zh., 42, 8, 1969, 1275
[65]Z. Jerman, Collect. Czech. Chem. Commun., 31, 1966, 3280
[66]K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras﹐ Langmuir, no.20, 2004, pp.2900–2907.
[67]M. Grätzel, Nature, no.414, 2001, pp.338-344
[68]T. Ma, T. Kida, M. Akiyama, K. Inoue, S. Tsunematsu, K. Yao, H. Noma, and E. Abe, “Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique,”Electrochem. Commun, 5 , 2003, pp. 369-372.
[69]A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M. C. Bernard, N. Spyrellis, and P. Falaras, “Nanostructured TiO2 films for DSSCs prepared by combining doctor-blade and sol–gel techniques,”J. Mater. Process. Technol, 196 , 2008, pp. 243-248.
[70]劉茂煌,工業材料雜誌,92年11月,203期
[71]Ferrere S., Gregg B. A., J. Am. Chem. Soc., no.120, 1998, pp.843.
[72]G. Sauve, M. E. Cass, S. J. Doig, I. Lauermann, K. Pomykal, N. S. Lewis, J. Phys. Chem. B, no.104, 2000, pp.3488.
[73]P. Wang, C. Klein, J. E. Moser, R. H. Baker, N. Le, C. Ha, R. Charvet, P. Comte, S. M. Zakeeruddin, M. Grätzel, J. Phys. Chem. B, no.108, 2004, pp.17553.
[74]A. Hagfeldt, M. Grätzel, Chem. Rev., no.95, 1995, pp.49.
[75]T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am.Chem. Soc., no.126, 2004, pp.12218.
[76]Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. Gordon, R. H. Baker, M. K. Nazeeruddin, M. Grätzel, J. Phys. Chem. B, no.109, 2005, pp.15397.
[77]K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B, no.107, 2003, pp.597.
[78]A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B, no.105, 2001, pp.9960.
[79]T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, Neil, A.Anderson, X. Ai, T. Lian,
S. Yanagida, Chem. Mater., no.16, 2004, pp.1806.
[80]J. He, G. Benko, F. Korodi, T. Polivka, R. Lomoth, B. Akermark, L. Sun, A. Hagfeldt, V. Sundstrom, J. Am. Chem. Soc., no.124, 2002, pp.4922.
[81]張芳碩,染料敏化二氧化鈦光電化學太陽能電池研究,碩士論文,2003/07。
[82]G. Schlichthorl, S. Y. Huang, J. Sprague and A. J. Frank, Band Edge.
[83]K.Schwarzburg and F. J. Willig, J. Phys. Chem, B, no.103, 1999, pp.5743.
[84]M K Nazeeruddin, A Kay, I Rodicio et, al.J.Am.Chem.Soc, no.115, 1993, pp.6382-6390.
[85]Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B. 107 , 2003, pp. 8981-8987.
[86]G. Boschloo, L. Haggman, A. Hagfeldt, “Quantification of the Effect of 4-tert-Butylpyridine Addition to I־/I3־ Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells”, J. Phys. Chem. B 110 , 2006, 13144-13150.
[87]G. Redmond, D. Fitzmaurice, “Spectroscopic Determination of Flatband Potentials for Polycrystalline Ti02 Electrodes in Nonaqueous Solvents”, J. Phys. Chem. 97 , 1993, pp.1426-1430.
[88]S. Nakade, S. Kambe, T. Kitamura et, al. J. Phys. Chem. B, no.105, 2001, pp.9150-9152.
[89]M. K. Nazeeruddin, A. Kay, I. Rodicio et, al. J. Am. Chem. Soc, no.115, 1993, pp.6382-6390.
[90]化學技術,鋰電池技術與現況,姚慶意,第七卷,第二期,1999。
[91]化學通報,染料敏化奈米薄膜太陽能電池電解質研究發展,第68卷,2005。
[92]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc, no. 16, 1977, pp. 578.
[93]M. Grätzel and A. J. Frank, J. Phys. Chem.B, no.101, 1997, pp.2576.
[94]T. Y. Lee, P. S. Alegaonkar and J. Yoo, “Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes, “Thin Solid Films, vol. 515, no. 12, 2007, pp. 5131-5135.
[95]M. B. C. Fernanda, C. D. Marcia, S. A. Lairton, "Anionic waterborne polyurethane dispersions based on hydroxyl-terminated polybutadiene and poly(propylene glycol): Synthesis and characterization," Journal of Applied Polymer Science, vol. 80, 2001, pp. 566-572.
[96]黃嘉興教授及其研究生,舊材料的新見解,氧化石墨烯之界面活性,西北大學材料科學與工程系,2011/3/31
[97]K. F. Zhou, Y. H. Zhu, X. L. Yang, X. Jiang and C. Z. Li, “Preparation of grapheme-TiO2 composites with enhanced photocatalytic activity.” New J. Chem. ,vol. 35, 2011, pp. 353-359.
[98]P. N. Zhu, A. S. Nair, S. G. Yang and R. Seeram,”TiO2-MWCNT rice grain-shaped nanocomposites: Synthesis, characterization and photocatalysis.” Materials Research Bulletin, vol. 46, 2011, pp. 588-595
[99]L. Han, N. Koide, Y. Chiba, and T. Mitate, Applied Physics Letters, on.84, 2004, pp.2433.
[100]Su Q, Liang Y, Feng X, Mullen K. Towards free-standing grapheme /carbon nanotube composite films via acetyleneassisted thermolysis of organocobalt functionalized graphene sheets. Chem Commun 2010:8279–81.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top