跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃子亘
研究生(外文):Zi-Xuan Huang
論文名稱:具抑制交互穩壓效應與強化輸出驅動能力之單電感雙輸出降壓轉換器
論文名稱(外文):Single – Inductor Dual – Output Buck Converter with Cross – Regulation Reduction and Enhanced Output Driving Capability
指導教授:鄭國興鄭國興引用關係
指導教授(外文):Kuo-Hsing Cheng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:106
中文關鍵詞:單電感雙輸出降壓轉換器交互穩壓效應自適應路徑選擇器輸出電流補償器
外文關鍵詞:Single-inductor dual-output (SIDO) buck converterCross-Regulationadaptive path selectoroutput current compensator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個輸入電壓 3.3 V、輸出電壓 1 V 與 1.2 V、具抑制交互穩壓效應與強化輸出驅動能力之單電感雙輸出降壓轉換器。本設計使用分時多工控制,並操作在連續導通模式,這使得電路在系統分析上能更加的直觀,且能承受較大的輸出電流負載。而為了改善單電感雙輸出轉換器最常會被討論的交互穩壓效應,本論文提出了 自適應的路徑選擇器以及輸出電流補償器,藉由偵測輸出電壓漣波以及電壓位準,電路即可判斷出兩輸出端的負載大小並分配電感電流給予兩輸出端,若其中有輸出因為電流不足而產生壓降時,輸出電流補償器就會為其補充所需電流,藉此改善交互穩壓效應的產生。
本論文之單電感雙輸出降壓轉換器使用 180 nm 3.3 V CMOS製程實現晶片。輸入電壓為 3.3 V,擁有兩個電壓輸出 1 V 與 1.2 V,操作頻率為 1 MHz,其中透過輸出電流補償機制,電路的交互穩壓效應改善量最低可達 65.3 %,而兩輸出端各自的供應負載電流範圍為 50 mA ~ 150 mA,晶片量測效率78.5 %,負載調節度 0.75 mV/mA,晶片面積則是 1.94 mm2。

A single – inductor dual – output ( SIDO ) buck converter with Cross – Regulation Reduction and Enhanced Output Driving Capability has been presented in this thesis, which provides two voltage outputs 1 V and 1.2 V under 3.3 V supply voltage. Time – multiplexing control in continuous conduction mode has been used in this design, as a result, this circuit can be simpler for system analysis and support larger load current. To improve the cross – regulation, which has been discussed often in the SIDO converters, adaptive path selector and output current compensator have been proposed in this thesis. By sensing the output voltage ripple and voltage level, the circuit can compare the load current of the two outputs, and distribute inductor current for the outputs. When a voltage drop has occurred at the one of the output, which causes by insufficient output current, the output current compensator will compensate it. This method can improve the cross – regulation efficiently.
The proposed SIDO buck converter has been fabricated in 180nm 3.3 V CMOS process, with two voltage outputs 1 V and 1.2 V under 3.3 V supply voltage at 1 MHz operating frequency. By the output current compensation, the cross – regulation improvement of the circuit can achieve 65.3 %. The load current range of the each output is 50 mA to 150 mA. The efficiency and the load regulation of the chip are 78.5 % and 0.75 mV/mA. The chip area is 1.94 mm2.

摘要 i
Abstract ii
圖目錄 vi
表目錄 ix
第1章 緒論 1
1.1 研究背景 1
1.2 相關研究發展 2
1.3 研究動機與目的 4
1.4 論文架構 5
第2章 單電感多輸出轉換器先前架構探討 7
2.1 單電感多輸出轉換器簡介 7
2.2 各類型單電感雙輸出轉換器 8
2.2.1 降壓型轉換器 8
2.2.2 其他類型轉換器 10
2.3 單電感多輸出轉換器控制模式 12
2.3.1 分時多工控制技術( Time – Multiplexing Control ) 13
2.3.2 能量分佈控制技術 16
2.4 先前技術探討 18
2.4.1 虛擬連續導通模式( Pseudo – Continuous Mode, PCCM )控制技術 – 分時多工控制 18
2.4.2 恆電流自動跳頻( Constant – Charge – Auto – Hopping, CCAH )控制技術 – 分時多工控制 21
2.4.3 順序能量分佈控制( Ordered Power – Distributive Control, OPDC )技術 – 能量分佈控制 23
2.4.4 雙模式能量傳遞技術( Dual – Mode Energy Delivery Methodology ) – 能量分佈控制 25
2.5 設計考量 28
第3章 應用於單電感雙輸出降壓轉換器之自適應電感電流路徑選擇器與輸出電流補償器 31
3.1 設計概念 31
3.2 自適應的路徑選擇器 32
3.2.1 自適應路徑選擇器之電路架構 33
3.2.2 自適路徑選擇器內部電路與模擬結果 37
3.3 輸出電流補償機制 40
3.3.1 輸出電流補償器內部電路與模擬結果 43
第4章 具抑制交互穩壓效應與強化輸出驅動能力之單電感雙輸出降壓轉換器 47
4.1 系統電路架構與簡介 47
4.2 電流模式控制 48
4.2.1 電流模式控制問題分析 49
4.2.2 電流模式控制系統分析 51
4.3 Matlab Simulink 行為模擬驗證 57
4.4 誤差放大器與 PI 補償器 58
4.5 電感電流偵測電路與外加斜率補償電路 60
4.6 負載追蹤時脈產生器 62
4.6.1 負載追蹤時脈產生器之電路架構 64
4.6.2 負載追蹤時脈產生器內部電路與模擬結果 65
4.7 緩啟動電路 67
第5章 電路模擬與晶片量測結果 69
5.1 設計流程 69
5.2 單電感雙輸出降壓轉換器結果 69
5.2.1 單電感雙輸出降壓轉換器 71
5.2.2 交互穩壓效應與暫態模擬 72
5.2.3 規格模擬 73
5.2.4 修正版自適應路徑選擇電路模擬結果 76
5.3 電路佈局與佈局後電路模擬 79
5.3.1 佈局考量 79
5.3.2 晶片打線與腳位配置 80
5.4 單電感雙輸出降壓轉換器量測設定 82
5.5 量測結果 85
5.6 晶片量測結果與近期相關論文比較 90
第6章 結論與未來研究方向 92
6.1 結論 92
6.2 未來研究方向 92
參考文獻 94

[1] D. Ma and R. Bondade, “Enabling power-efficient DVFS operations on silicon,” IEEE Circuits Syst. Mag., vol. 10, no. 1, pp. 14–29, 1st Quarter, 2010.
[2] M.-H. Huang and K.-H. Chen, “Single-inductor multi-output (SIMO) DC–DC converters with high light–load efficiency and minimized cross-regulation for portable devices,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099–1111, Apr. 2009.
[3] Ridley, R. B., “A New Continuous-Time Model for Current-Mode Control with Constant On-Time, Constant Off-Time, and Discontinuous Conduction Mode,” IEEE Power Electronics Specialists Conference Record, San Antonio, Texas, June 1990, pp. 382-389
[4] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA:Kluwer,2001
[5] W.-H. Ki and D. Ma, “Single-Inductor Multiple-Output Switching Converters, ” in Proc. Power Electronic Specialists Conference, 2001, pp. 226-231.
[6] D. Kwon, and G. A. Rincón-Mora, “Single-Inductor-Multiple-Output Switching DC-DC Converters, ” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, pp. 614-618, Aug. 2009.
[7] D. Ma, W.-H. Ki, C.-Y. Tsui, and P. K. T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode,” IEEE J. Solid-State Circuits, vol. 38, no.1, pp. 89–100, Jan. 2003.
[8] H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, and G.-H. Cho, “A single-inductor switching DC-DC converter with five outputs and ordered power-distributive control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2706–2714, Dec. 2007.
[9] D. Ma, W.-H. Ki, and C.-Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007–1014, Jun. 2003.
[10] X. Jing, P. K. T. Mok, and M.-C. Lee, “A wide-load-range constant charge- auto-hopping-control single-inductor-dual-output boost regulator with minimized cross-regulation,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2350–2362, Oct. 2011.

[11] Y.-H. Lee, T.-C. Huang, Y.-Y. Yang, W.-S. Chou, K.-H. Chen, C.-C. Huang, and Y.-H. Lin, “Minimized transient and steady-state cross regulation in 55-nm CMOS single-inductor dual-output (SIDO) step down DC-DC converter,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2488-2499, Nov. 2011.
[12] G. A. Rincón-Mora, P. E. Allen, ”A Low-voltage, low quiescent current, low drop-out regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36-44, Jan 1998.
[13] C.-F. Lee and P. K. T. Mok ”A monolithic current-mode CMOS DC-DC Converter with On-Chip Current Sensing Technique,” IEEE J. Solid-State Circuits Vol. 39, no 1, pp.3–14, Jan. 2004.
[14] C.-H. Chang and Robert, C.-Chang, “A Novel Current Sensing Circuit for a Current-Mode Control CMOS DC-DC Buck Converter,” IEEE VLSI-TSA International Symposium on VLSI Design, Automation & Test, pp.120 – 123 April
[15] Denier, “Analysis and design of an ultralow-power CMOS relaxation oscillator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1973–1982, Aug. 2010.
[16] Y. Zhang and D. Ma,” A Fast-Response Hybrid SIMO Power Converter with Adaptive Current Compensation and Minimized Cross-Regulation,” IEEE J. Solid-State Circuits , vol. 49 , no. 5 , pp. 1242-1255 , May 2014.
[17] J.-Jia and K.-N. Leung, “Digital-control single-inductor triple-output DC–DC converter with pre-sub-period inductor-current control,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2028–2042, Apr. 2012.
[18] Y.-J. Woo, H.-P. Le, G.-H. Cho, G.-H. Cho, and S.-I. Kim, “Load independent control of switching DC-DC converters with freewheeling current feedback,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2798–2808, Dec. 2008.
[19] W.-Xu, Y.-Li, X.-Gong, and Z.-Hong, “A dual-mode single-inductor dual-output switching converter with small ripple,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 614–623, Mar. 2010.
[20] D. J. Allstot, “A precision Variable-Supply CMOS Comparator,” IEEE J.Solid-State Circuits,Vol.SC-17,pp1080-1087,Dec.1982

[21] W.-Sun, C.-Han, M.-Yang, S.-Xu, and S.-Lu ,“A Ripple Control Dual-Mode Single-Inductor Dual-Output Buck Converter With Fast Transient Response,” IEEE Trans. Very Large Scale Integr. Syst. , pp. 1–11 , 2014.
[22] C.-S. Chae, H.-P. Le, K.-C. Lee, G.-H. Cho, and G.-H. Cho, “A single inductor step-up DC-DC switching converter with bipolar outputs for active matrix OLED mobile display panels,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 509–524, Feb. 2009.
[23] T. Li, “Single inductor multiple output boost regulator,” in U.S. Patent 6,075,295, July 22, 2000
[24] W.-H. Chang, J.-H. Wang, and C.-H. Tasi, “A peak-current controlled single-inductor dual output DC-DC buck converter with a time-multiplexing scheme,” in Proc. IEEE Int. Symp. VLSI Design, Automation and Test, Apr. 2010, pp. 331–334.
[25] K.-N. Leung, Philip K. T. Mok, “A Sub-1-V 15-ppm/ C CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device,’’ IEEE J. Solid-State Circuits , Vol 37,pp.526-530, April 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top