|
[1] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEE Proc. - Control Theory App. , vol. 151, no. 6, pp. 683-690, 2004. [2] G. Bartonlini, A. Pisano and E. Usai, “Second-order sliding-mode control of container cranes,” Automatica, vol. 38, no. 10, pp. 1783-1790, 2002. [3] Sakawa and Y. Shindo, “Optimal control of container cranes,” Automatica, vol. 18, no. 3, pp. 257-266, 1982. [4] M.A. Karkoub and M. Zribi, “Modelling and energy based nonlinear control of crane lifters,” IEE Proc.-Control Theory Application, vol. 149, no. 3, pp. 209-216 , 2002. [5] Y. Fang, W. E. Dixon, D.M. Dawson and E. Zergeroglu, “Nonlinear coupling control laws for an underactuated overhead crane system,” IEEE/ASME Transaction on Mechatron, vol.8, no. 3, pp. 418-423, 2003. [6] A. Giua, C. Seatzu and G. Usai, “Observer-controller design for cranes via Lyapunov equivalence,” Automatica, vol. 35, no. 4, pp. 669- 678, 1999. [7] G. Corriga, A. Giua and G. Usai, “An implicit gain-scheduling controller for cranes,” IEEE Trans. Contr. Syst., vol. 6, no. 1, pp. 15-20, 1998. [8] A. Piazzi and A. Visioli, “Optimal dynamic inversion based control of an overhead crane,” IEE Proc-Control Theory Application, vol. 149, no. 5, pp. 405-411, 2002. [9] J.J. Hamalinen, A. Marttinen, L. Baharova and J. Virkkunen, “Optimal path planning for a trolley crane fast and smooth transfer of load,” IEE Proc.- Control Theory Application, vol. 142, no. 1, pp. 51-57, 1995. [10] B. d’Andrea and J. M. Coron, “Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach,” Automatica, vol. 36, no. 4, pp. 587-593, 2000. [11] X. Zhang, B. Gao and H. Chen, “Nonlinear controller for a gantry crane based on partial feedback linearization,” Proceedings of the 2005 IEEE International Conference on Control and Automations, pp. 1074–1078. [12] H. H. Lee, “Modeling and control of three-dimensional overhead crane,” ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, vol. 120, pp. 471–476, 1998. [13] H.-H. Lee, “A new motion-planning scheme for overhead cranes with high- speed hoisting,” ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, vol. 126, pp. 359–364, 2004. [14] H. H. Lee, “Motion planning for three-dimensional overhead cranes with high-speed load hoisting,” Int. J. Control, vol. 78, no. 12, pp. 875- 886, 2005. [15] H. H. Lee, “A new design approach for the anti-swing trajectory control of overhead cranes with high-speed hosting,” Int. J. Control, vol. 77, no. 10, pp. 931-940, 2004. [16] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction and its compensation in precise, position controlled mechanisms,” IEEE Trans. Industry Application, vol. 28, no. 6, pp. 1392-1398, 1992. [17] R. M. Hischorn and G. Miller, “Control of Nonlinear system with friction,” IEEE Trans. Contr. Tech., vol. 28, no. 6, pp. 588-595, 1992. [18] M. Iwasaki, H. Takei and N. Matsui, “GMDH-Based modeling and feedforward compensation for nonlinear fiction in table systems,” IEEE Transactions on Industrial Electronics, vol. 50, no. 6, pp.1172-1178, 2003. [19] T. Shen, K. Tamura and H. Kaminaga, “Robust nonlinear control of parametric uncertain systems with unknown friction and its application to pneumatic control value,” Journal of Dynamic System, Measurement, and Control, vol. 122, no. 2, pp. 257-262, 2000. [20] T. Matsuo, R. Yoshino, H. Suemitsu, and K. Nakano, “Nominal performance recovery by PID+Q controller and its application to antisway control of crane lifter with visual feedback,” IEEE Tran. Contr. Sys. Tech., vol. 12, no. 1, pp.156-166, 2004. [21] T. Matsuo and K. Nakano, “Robust stabilization of closed-loop systems by PID+Q controller,” Int. J. Control, vol. 70, no. 4, pp. 631-650, 1998. [22] A. C. Sanderson, and L. E. Weiss, “Image-based visual servo control using relational graph error signals,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1074-1077, 1980. [23] S. Hutchinson, G. Hager and P. Corke, “A tutorial on visual servo control,” IEEE Trans. Robotics Automat., vol. 12, no.5, pp. 651–670, Oct. 1996. [24] M. Reyhanoglu, A. Schaft, N. H. McClamroch and I. Kolmanovsky, “Dynamics and control of a class of underactuated mechanical systems,” IEEE Tran. Automatic Control, vol. 44, no. 9, pp.1663-1671, 1999. [25] F. Bullo, N. E. Leonard and A. D. Lewis, “Controllability and motion algorithms for underactuated Lagrangian systems on Lie Groups,” IEEE Tran. Automatic Control, vol. 45, no. 8, pp. 1437-1454, 2000. [26] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems,” IEEE Tran. Robotics and Automation, vol. 17, no. 4, pp. 402-412, 2001. [27] Z. Sun, S. S. Ge and T.H Lee, “Stabilization of underactued mechanical systems: a non-regular backstepping approach,” Int. J. Control, vol. 74, no. 11, pp. 1045-1051, 2001. [28] J. Á. Acosta, R. Ortega, A. Astolfi and A. D. Mahindrakar, “Interconnection and Damping Assignment Passivity-Based Control of Mechanical Systems With Underactuation Degree One,” IEEE Tran. Automatic Control, vol. 50, no. 12, pp.1936-1955, 2005. [29] A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, “Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach,” IEEE Tran. Automatic Control, vol. 50, no. 8, pp.1164-1176, 2005. [30] R. Jain, R. Kasturi and B. G.. Schunck, MachineVision, McGraw-Hall, Inc., 1995. [31] H. K. Khalil, Nonlinear systems, 3rd Edition, Prentice Hall, 2002.
|