|
[1] M.Tervaniemi andK.Hugdahl, “Lateralization of auditory-cortex functions,” Brain Res. Rev., vol. 43, no. 3, pp. 231–246, 2003. [2] B. D.VanVeen, W.VanDrongelen, M.Yuchtman, andA.Suzuki, “Localization of brain electrical activity via linearly constrained minimum variance spatial filtering.,” IEEE Trans. Biomed. Eng., vol. 44, no. 9, pp. 867–880, 1997. [3] J.Malmivuo, V.Suihko, andH.Eskola, “Sensitivity distributions of EEG and MEG measurements,” IEEE Trans. Biomed. Eng., vol. 44, no. 3, pp. 196–208, 1997. [4] S.Baillet, J. C.Mosher, andR. M.Leahy, “Electromagnetic brain mapping,” IEEE Signal Process. Mag., vol. 18, no. 6, pp. 14–30, 2001. [5] J.Bohórquez andÖ.Özdamar, “Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution,” Clin. Neurophysiol., vol. 119, no. 11, pp. 2598–2607, 2008. [6] G. P.Jacobson, D. L.McCaslin, B.Smith, K.Elisevich, andP.Mishler, “Test-retest stability and short-term habituation of the N1 and gamma band response.,” J. Am. Acad. Audiol., vol. 10, no. 4, pp. 211–8, 1999. [7] B.Ross, A. T.Herdman, andC.Pantev, “Right hemispheric laterality of human 40 Hz auditory steady-state responses,” Cereb. Cortex, vol. 15, no. 12, pp. 2029–2039, 2005. [8] “Forward Model and Inversion.” [Online]. Available: http://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel. [Accessed: 09-Jul-2016]. [9] S.Sillekens, “Influence of Volume Conduction on Beamformer Source Analysis in the Human Brain,” Westfälische Wilhelms-Universität Münster, 2008. [10] M. S.Hämäläinen, R.Hari, R. J.Ilmoniemi, J.Knuutila, andO.VLounasmaa, “Magnetoencephalography - theory, instrumentation, and applications to noninvasivee studies of the working human brain,” Reviews of modern physics, vol. 65, no. 2. pp. 413–505, 1993. [11] M.Gatta et al., “Magnetoencephalography in the study of brain dynamics,” Funct. Neurol., vol. 29, no. 4, pp. 64–70, 2014. [12] J.Clarke andA. I.Braginski, The SQUID Handbook: Vol 2 Applications of SQUIDs and SQUID Systems. 2006. [13] J.Malmivuo andR.Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. New York: Oxford University Press, 1995. [14] M.-X.Huang, J. C.Mosher, andR. M.Leahy, “A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG.,” Phys. Med. Biol., vol. 44, no. 2, pp. 423–40, 1999. [15] J.Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem.,” Phys. Med. Biol., vol. 32, no. 1, pp. 11–22, 1987. [16] M.Lalancette, M.Quraan, andD.Cheyne, “Evaluation of multiple-sphere head models for MEG source localization,” Phys. Med. Biol., vol. 56, no. SEPTEMBER, pp. 5621–5635, 2011. [17] V.Murzin, A.Fuchs, andJ. A. S.Kelso, “Anatomically constrained minimum variance beamforming applied to EEG,” Exp. Brain Res., vol. 214, no. 4, pp. 515–528, 2011. [18] Z. A.Acar andS.Makeig, “Effects of forward model errors on EEG source localization,” Brain Topogr., vol. 26, no. 3, pp. 378–396, 2013. [19] C. H.Wolters, A.Anwander, X.Tricoche, D.Weinstein, M. A.Koch, andR. S.MacLeod, “Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling,” Neuroimage, vol. 30, no. 3, pp. 813–826, 2006. [20] D.Güllmar, J.Haueisen, andJ. R.Reichenbach, “Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study,” Neuroimage, vol. 51, no. 1, pp. 145–163, 2010. [21] G.Marin, C.Guerin, S.Baillet, L.Garnero, andG.Meunier, “Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models,” Hum. Brain Mapp., vol. 6, no. 4, pp. 250–269, 1998. [22] G.Nolte, “The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors,” Phys. Med. Biol., vol. 48, no. 22, pp. 1–16, 2003. [23] M.Stenroos andJ.Sarvas, “Bioelectromagnetic forward problem: isolated source approach revis(it)ed,” Phys. Med. Biol., vol. 57, no. 11, pp. 3517–3535, 2012. [24] M.Stenroos, A.Hunold, andJ.Haueisen, “Comparison of three-shell and simplified volume conductor models in magnetoencephalography,” Neuroimage, vol. 94, pp. 337–348, 2014. [25] M. X.Cohen, Analyzing Neural Time Series Data: Theory and Practice. 2014. [26] R. N.Henson, E.Mouchlianitis, andK. J.Friston, “MEG and EEG data fusion : Simultaneous localisation of face-evoked responses,” Neuroimage, vol. 47, no. 2, pp. 581–589, 2009. [27] R. A.Chowdhury et al., “MEG–EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy,” Brain Topogr., vol. 28, no. 6, pp. 785–812, 2015. [28] A. A.Ioannides, J. P. R.Bolton, andJ. J. S.Clarke, “Continuous probabilistic solutions to the biomagnetic inverse problem,” Physics (College. Park. Md)., vol. 6, pp. 523–542, 1990. [29] K.Sekihara andS. S.Nagarajan, “Chapter 2 Sensor array outputs and spatial filters,” in Adaptive Spatial Filters for Electromagnetic Brain Imaging, 2008. [30] R. J.Ilmoniemi, “Models of source currents in the brain,” Brain Topogr., vol. 5, no. 4, pp. 331–336, 1993. [31] J. Z.Wang, S. J.Williamson, andL.Kaufman, “Magnetic Source Images Determined by a Lead-Field Analysis: The Unique Minimum-Norm Least-Squares Estimation,” IEEE Trans. Biomed. Eng., vol. 39, no. 7, pp. 665–675, 1992. [32] R. D.Pascual-Marqui, C. M.Michel, andD.Lehmann, “Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain,” Int. J. Psychophysiol., vol. 18, no. 1, pp. 49–65, 1994. [33] A.Moiseev, S. M.Doesburg, R. E.Grunau, andU.Ribary, “Minimum variance beamformer weights revisited,” Neuroimage, vol. 120, pp. 201–213, 2015. [34] T.Halder, S.Talwar, A. K.Jaiswal, andA.Banerjee, “Performance evaluation of inverse methods for identification and characterization of oscillatory brain sources: Ground truth validation & empirical evidences,” bioRxiv, p. 395780, 2018. [35] F. H.Lin, T.Witzel, T. A.Zeffiro, andJ. W.Belliveau, “Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging,” Neuroimage, vol. 43, no. 2, pp. 297–311, 2008. [36] W.VanDrongelen, M.Yuchtman, B. D.VanVeen, and a. C.VanHuffelen, “A spatial filtering technique to detect and localize multiple sources in the brain,” Brain Topogr., vol. 9, no. 1, pp. 39–49, 1996. [37] A.Hillebrand, K. D.Singh, I. E.Holliday, P. L.Furlong, andG. R.Barnes, “A new approach to neuroimaging with magnetoencephalography,” Hum. Brain Mapp., vol. 25, no. 2, pp. 199–211, 2005. [38] A.Fuchs, “Beamforming and its applications to brain connectivity,” Underst. Complex Syst., vol. 2007, pp. 357–378, 2007. [39] J.Vrba andS. E.Robinson, “Signal processing in magnetoencephalography.,” Methods, vol. 25, no. 2, pp. 249–71, 2001. [40] K.Sekihara, S. S.Nagarajan, D.Poeppel, andA.Marantz, “Asymptotic SNR of scalar and vector minimum-variance beanformers for neuromagnetic source reconstruction,” IEEE Trans. Biomed. Eng., vol. 51, no. 10, pp. 1726–1734, 2004. [41] M. J.Brookes et al., “Beamformer reconstruction of correlated sources using a modified source model,” Neuroimage, vol. 34, no. 4, pp. 1454–1465, 2007. [42] A. T.Herdman andD.Cheyne, “A Practical Guide for MEG and Beamforming,” in Brain Signal Analysis: Advances in Neuroelectric and Neuromagnetic Methods, no. February 2016, 2009, pp. 1–36. [43] S. S.Dalal, K.Sekihara, andS. S.Nagarajan, “Modified beamformers for coherent source region suppression,” IEEE Trans. Biomed. Eng., vol. 53, no. 7, pp. 1357–1363, 2006. [44] M.-X.Huang et al., “Commonalities and Differences among Vectorized Beamformers in Electromagnetic Source Imaging,” Brain Topogr., vol. 16, no. 3, pp. 139–158, 2004. [45] M. A.Quraan andD.Cheyne, “Reconstruction of correlated brain activity with adaptive spatial filters in MEG,” Neuroimage, vol. 49, no. 3, pp. 2387–2400, 2010. [46] M.Diwakar et al., “Dual-Core Beamformer for obtaining highly correlated neuronal networks in MEG,” Neuroimage, vol. 54, no. 1, pp. 253–263, 2010. [47] M.Diwakar et al., “Accurate reconstruction of temporal correlation for neuronal sources using the enhanced dual-core MEG beamformer,” Neuroimage, vol. 56, no. 4, pp. 1918–1928, 2011. [48] A.Moiseev andA. T.Herdman, “Multi-core beamformers: derivation, limitations and improvements.,” Neuroimage, vol. 71, pp. 135–46, 2013. [49] S.Haufe andA.Ewald, “A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies,” Brain Topogr., 2016. [50] J. M.Gomes et al., “Intracellular Impedance Measurements Reveal Non-ohmic Properties of the Extracellular Medium around Neurons,” Biophys. J., vol. 110, no. 1, pp. 234–246, 2016. [51] W. E.Kincses, C.Braun, S.Kaiser, andT.Elbert, “Modeling extended sources of event-related potentials using anatomical and physiological constraints,” Hum. Brain Mapp., vol. 8, no. 4, pp. 182–193, 1999. [52] T.Limpiti, S.Member, B. D.VanVeen, andR. T.Wakai, “Cortical Patch Basis Model for Spatially Extended Neural Activity,” IEEE Trans. Biomed. Eng., vol. 53, no. 9, pp. 1740–1754, 2006. [53] B.Cottereau, K.Jerbi, andS.Baillet, “Multiresolution imaging of MEG cortical sources using an explicit piecewise model,” Neuroimage, vol. 38, no. 3, pp. 439–451, 2007. [54] L.Ding andB.He, “Sparse source imaging in electroencephalography with accurate field modeling,” Hum. Brain Mapp., vol. 29, no. 9, pp. 1053–1067, 2008. [55] J. D.López, V.Litvak, J. J.Espinosa, K. J.Friston, andG. R.Barnes, “Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM,” Neuroimage, vol. 84, pp. 476–487, 2014. [56] A.Sohrabpour, Y.Lu, G.Worrell, andB.He, “Imaging brain source extent from EEG/MEG by means of an iteratively reweighted edge sparsity minimization (IRES) strategy,” Neuroimage, vol. 142, pp. 27–42, 2016. [57] H.Becker et al., “EEG extended source localization: Tensor-based vs. conventional methods,” Neuroimage, vol. 96, pp. 143–157, 2014. [58] F.Cong, Q.-H.Lin, L.-D.Kuang, X.-F.Gong, P.Astikainen, andT.Ristaniemi, “Tensor decomposition of EEG signals: A brief review,” J. Neurosci. Methods, vol. 248, pp. 59–69, 2015. [59] H.Becker, L.Albera, andP.Comon, “Brain source imaging : from sparse to tensor models,” vol. c, no. 2, 2015. [60] E.Karahan, P. A.Rojas-lopez, M. L.Bringas-vega, P. A.Valdés-Hernández, andP. A.Valdes-Sosa, “Tensor Analysis and Fusion of Multimodal Brain Images,” Proc. IEEE, vol. 103, no. 9, pp. 1531–1559, 2015. [61] J.Dauwels, K.Srinivasan, andR. R.M, “Multi-channel EEG compression based on matrix and tensor decompositions,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., pp. 637–640, 2011.
|