中文部分
田麥久,麻雪田,黃新河,張保羅,賀子文,趙國瑞 (1998) 。項群訓練理論。北京:人民體育出版社
呂裕雄 (2006) 。不同間歇低氧踏車訓練對最大攝氧量之影響。未出版碩士論文,國立嘉義大學碩士論文,嘉義縣。林正倫 (2014) 。間歇訓練對業餘自行車選手運動表現之影響。未出版碩士論文,國立台北護理健康大學碩士論文,臺北市。林正常 (1996)。運動生理學實驗指引。師大書苑,台北市。
林正常等譯 (2008)。運動訓練法。台北市:藝軒。
張博勛 (2017) 。高強度循環訓練對心肺適能與心率變異性之影響。未出版碩士論文,國立臺灣師範大學碩士論文,臺北市。顏克典 (2006) 。間歇低氧訓練對有氧適能與心率變異性表現之影響。未出版碩士論文,國立臺灣師範大學博士論文,臺北市。英文部分
Bassett DR Jr , Kyle CR , Passfield L , Broker JP , Burke ER (1999): Comparing cycling world hour records, 1967-1996: modeling with empirical data Medicine and Science in Sports and Exercise, 31(11), 1665-1676
Beneke R, Leithäuser R.M., & Ochentel O.(2011): Blood Lactate Diagnostics in Exercise Testing and Training. International Journal of Sports Physiology and Performance, 6(1), 8-24. doi:10.1123/ijspp.6.1.8
Coyle EF , Feltner ME , Kautz SA , Hamilton MT , Montain SJ , Baylor AM , Abraham LD , Petrek GW: Physiological and biomechanical factors associated with elite endurance cycling performance. Medicine and Science in Sports and Exercise [01 Jan 1991, 23(1):93-107]
Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., … Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(1), 264-272. doi:10.1152/ajpregu.00875.2007Fre´de´ric N.
Denham, J., Scott-Hamilton, J., Hagstrom, A. D., & Gray, A. J. (2017) . Cycling power outputs predict functional threshold power and maximum oxygen uptake. Journal of Strength and Conditioning Research. doi:10.1519/jsc.0000000000002253
Gavin, T. P., Van Meter, J. B., Brophy, P. M., Dubis, G. S., Potts, K. N., & Hickner, R. C. (2012). Comparison of a Field-Based Test to Estimate Functional Threshold Power and Power Output at Lactate Threshold. Journal of Strength and Conditioning Research, 26(2), 416-421. doi:10.1519/jsc.0b013e318220b4eb
Hawley, J. A., & Noakes, T. D. (1992). Peak power output predicts
maximal oxygen uptake and performance time in trained cyclists.
European Journal of Applied Physiology and Occupational
Physiology, 65 (1) , 79-83.
Hunter Allen (Author) , Andrew Coggan PhD (2006) : Training and
Racing with a power meter
Lehmann, M., Foster, C., & Keul, J. (1993). Overtraining in endurance athletes: A brief review. Medicine & Science in Sports & Exercise, 25(7), 854-862.
Lamberts, R. P., Lambert, M. I., Swart, J., & Noakes, T. D. (2011) . Allometric scaling of peak power output accurately predicts time trial performance and maximal oxygen consumption in trained cyclists. British Journal of Sports Medicine, 46(1), 36-41. doi:10.1136/bjsm.2010.083071
Mader, A., & Heck, H. (1986). A theory of the metabolic origin of
"anaerobic threshold". International Journal of Sports Medicine,
(Suppl 1) , 45-65.
Mader, A., Liesen, H., Heck, H., Philippi, H., Rost, R., Schuerch, P., &
Hollmann,W. Zur Beurteilung der sportartspezifischen
Ausdauerleistungsfähigkei im Labor
Paul B. Laursen, David G. Jenkins (2002): The Scientific Basis for
High-Intensity Interval Training Optimising Training Programmes and Maximising Performance in Highly Trained Endurance Athletes Sports Medicine Volume 32, Issue 1, pp 53–73
Tudor Bompa (1996) : Periodization-5th Edition: Theory and Methodology of Training
Thomas Stöggl, Billy Sperlich (2014): Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front. Physiol https://doi.org/10.3389/fphys.2014.00033
Weston, A. R., Myburgh, K. H., Lindsay, F. H., Dennis, S. C., Noakes, T. D., & Hawley, J. A. (1996) . Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European Journal of Applied Physiology, 75 (1), 7-13. doi:10.1007/s004210050119