跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭清松
研究生(外文):TungTrinh
論文名稱:光照法製備熱可調式液晶彈性體的研究
論文名稱(外文):Study on Thermal Tunable Liquid Crystal ElastomersBased on Photo Patterning Technique
指導教授:劉瑞祥
指導教授(外文):Hsiang Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:62
中文關鍵詞:液晶彈性體光聚合熱敏性液晶彈性體可逆致動器
外文關鍵詞:liquid crystal elastomersphotopolymerizationthermal-sensitive liquid crystal elastomersreversible actuators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於液晶彈性體具有液晶排列的次序性與聚合物網狀結構的彈性性質,因此具有獨特的性質。為了製備熱驅動性液晶彈性體,本研究使用偶氮苯單體(Azo Fulen)、合成的寡聚物和交聯劑(BAHB)來進行光聚合。並使用差示掃描量熱法(DSC)及偏光顯微鏡(POM),找出液晶混合物的相轉移溫度。藉由紫外-可見分光光度法,測量材料的吸收光譜。在熱刺激下,液晶彈性體能多次的表現出可逆的驅動。這種現象歸因於熱酯交換和紫外光誘導的聚合,進而導致液晶彈性體有序參數S(order parameters)的記憶。研究結果顯示,合成的液晶彈性體膜能夠有效地將熱能轉換成機械動力。這個初步設計的熱敏性薄膜,期待在智能微型機器人系統中顯現出多樣實際應用的潛力。
The liquid crystal elastomers have unique properties because of combining liquid crystal orientational order with the elastic properties of a polymer network. To fabricate a thermal-responsive liquid crystal elastomer film, photo-polymerization of monomeric Azo Fulen, synthesized oligomer, and crosslinker BAHB was carried out. The transition temperatures of liquid crystal mixtures were confirmed using DSC and POM. The absorption spectra was measured using UV-Vis spectrometry. Under thermal stimulation, the polymerized liquid crystal elastomers show reversible actuation upon many cycles. This phenomenon is ascribed to thermal transesterification and UV induced polymerization lead to the memory of order parameters of LCEs. The results indicate that the synthesized liquid crystal elastomer film can effectively transfer thermal energy to mechanical power. The predesigned thermal-sensitive films are expected to show a number of potential for practical application in micro-robotic system with smart features.
Abstract I
中文摘要 II
Contents III
List of tables VI
List of figures VII
List of abbreviation XI
Chapter 1 General Introduction 1
1-1 Preface 1
1-2 Research Motivations 2
Chapter 2 Review and Theoretical Background 3
2-1 Introduction of Liquid Crystals 3
2-1-1 Historical Overview 3
2-1-2 Mesogenic molecules and orientational order 4
2-2 Classification of Liquid Crystal 9
2-2-1 Nematic Liquid Crystal Phase 11
2-2-2 Smectic Liquid Crystal Phase 11
2-2-3 Cholesteric Liquid Crystal Phase 14
2-2-4 Discotic Liquid Crystal Phase 15
2-2-5 Lyotropic Liquid Crystals 18
2-3 Introduction of Photo-polymerization Reaction 19
2-4 Introduction and Theory of Photochromic LC Polymers 21
2-5 Liquid Crystal Elastomers 22
2-5-1 Thermally induced actuation of LCEs 23
2-5-2 Photo-responsive actuation of LCEs 27
2-5-3 Solvent/Humidity Driven Stimuli Elastomer Actuation 30
Chapter 3 Experimental Section 32
3-1 Materials 32
3-2 Synthesis 32
3-2-1 Synthesis of bifunctional monomer BAHB 32
3-2-2 Synthesis of oligomer 35
3-3 Fabrication of LCEs based on photo patterning technique 37
3-3-1 Fabrication of polydomain LCE film 37
3-3-2 Fabrication of monodomain LCE 40
3-3-3 Fabrication of thermal tunable LCEs based on photo patterning technique 40
3-4 Analysis Apparatus 41
Chapter 4 Results and Discussion 43
4-1 1H-NMR of BAHB 43
4-2 Characterization of oligomer 1A 44
4-2-1 1H-NMR of oligomer 1A. 44
4-2-2 Molecular weight calculation of oligomer 1A by 1H-NMR 44
4-2-3 Molecular weight calculation of oligomer 1A by gel permeation chromatography (GPC) 46
4-2-4 Thermal properties of oligomer 1A 46
4-3 Characterization of LC mixture 49
4-3-1 Thermal properties 49
4-3-2 UV spectra of LC mixture 51
4-4 Thermal actuation of monodomain LCE 52
Schematic illustration of thermal tunable LCE 53
4-5 Characterization of LCE actuator 54
4-5-1 Actuation behavior of sample film 54
4-5-2 Fixing of highly ordered hinge 55
4-5-3 DSC analysis 56
4-6 Swelling ratio and gel fraction 57
Chapter 5 Conclusions 59
Chapter 6 References 60
1.De Jeu, W.H., Liquid crystal elastomers: materials and applications. Vol. 250. 2012: Springer.
2.Reinitzer, F., Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie/Chemical Monthly, 1888. 9(1): p. 421-441.
3.Chen, R.H., Liquid crystal displays: fundamental physics and technology. 2011: John Wiley & Sons.
4.Hogan, B., et al., 2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C, 2017. 5(43): p. 11185-11195.
5.Shibaev, V., Liquid-crystalline polymers: Past, present, and future. Polymer Science Series A, 2009. 51(11-12): p. 1131.
6.Onsager, L., The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 1949. 51(4): p. 627-659.
7.Dierking, I. and S. Al-Zangana, Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials, 2017. 7(10): p. 305.
8.Kouwer, P.H., et al., Modeling of ND and NCol phase transitions in discotic side chain polymers by the extended McMillan theory. Journal of the American Chemical Society, 2001. 123(19): p. 4645-4646.
9.Huang, Y. and S. Gui, Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Advances, 2018. 8(13): p. 6978-6987.
10.Dumanli, A.G. and T. Savin, Recent advances in the biomimicry of structural colours. Chemical Society Reviews, 2016. 45(24): p. 6698-6724.
11.Mathews, M., et al., Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals. Journal of Materials Chemistry, 2011. 21(7): p. 2098-2103.
12.Andrzejewska, E., Free radical photopolymerization of multifunctional monomers, in Three-Dimensional Microfabrication Using Two-photon Polymerization. 2016, Elsevier. p. 62-81.
13.Natansohn, A. and P. Rochon, Photoinduced motions in azo-containing polymers. Chemical reviews, 2002. 102(11): p. 4139-4176.
14.Kawatsuki, N., E. Uchida, and T. Yamamoto, Photocontrol of birefringence and in‐plane molecular orientation in copolymer liquid crystal films with 4‐methoxyazobenzene and photo‐cross‐linkable side groups. Macromolecular Chemistry and Physics, 2003. 204(4): p. 584-590.
15.Kaufhold, W., H. Finkelmann, and H.R. Brand, Nematic elastomers, 1. Effect of the spacer length on the mechanical coupling between network anisotropy and nematic order. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1991. 192(11): p. 2555-2579.
16.Warner, M. and E.M. Terentjev, Liquid crystal elastomers. Vol. 120. 2007: Oxford university press.
17.de Gennes, P.-G., Un muscle artificiel semi-rapide. Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy, 1997. 324(5): p. 343-348.
18.De Gennes, P.G., M. Hébert, and R. Kant. Artificial muscles based on nematic gels. in Macromolecular Symposia. 1997. Wiley Online Library.
19.Saed, M.O., et al., Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 2019. 29(3).
20.Yu, L., et al., Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation. Advanced Functional Materials, 2018. 28(37): p. 8.
21.Yang, R. and Y. Zhao, Non-Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie-International Edition, 2017. 56(45): p. 14202-14206.
22.Tian, H.M., et al., Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. Acs Applied Materials & Interfaces, 2018. 10(9): p. 8307-8316.
23.Kohlmeyer, R.R. and J. Chen, Wavelength-Selective, IR Light-Driven Hinges Based on Liquid Crystalline Elastomer Composites. Angewandte Chemie-International Edition, 2013. 52(35): p. 9234-9237.
24.Yue, Y.F., et al., Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nature Communications, 2018. 9.
25.Yu, L., et al., Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. Journal of Materials Chemistry C, 2014. 2(40): p. 8501-8506.
26.Wani, O.M., et al., An Artificial Nocturnal Flower via Humidity-Gated Photoactuation in Liquid Crystal Networks. Advanced Materials, 2019. 31(2).
27.Zhang, Y.S., A. Emelyanenko, and J.H. Liu, Fabrication and optical characterization of imprinted broad‐band photonic films via multiple gradient UV photopolymerization. Journal of Polymer Science Part B: Polymer Physics, 2017. 55(19): p. 1427-1435.
28.Jampani, V.S.R., et al., Micrometer-Scale Porous Buckling Shell Actuators Based on Liquid Crystal Networks. Advanced Functional Materials, 2018. 28(31).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top