|
1.De Jeu, W.H., Liquid crystal elastomers: materials and applications. Vol. 250. 2012: Springer. 2.Reinitzer, F., Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie/Chemical Monthly, 1888. 9(1): p. 421-441. 3.Chen, R.H., Liquid crystal displays: fundamental physics and technology. 2011: John Wiley & Sons. 4.Hogan, B., et al., 2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C, 2017. 5(43): p. 11185-11195. 5.Shibaev, V., Liquid-crystalline polymers: Past, present, and future. Polymer Science Series A, 2009. 51(11-12): p. 1131. 6.Onsager, L., The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 1949. 51(4): p. 627-659. 7.Dierking, I. and S. Al-Zangana, Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials, 2017. 7(10): p. 305. 8.Kouwer, P.H., et al., Modeling of ND and NCol phase transitions in discotic side chain polymers by the extended McMillan theory. Journal of the American Chemical Society, 2001. 123(19): p. 4645-4646. 9.Huang, Y. and S. Gui, Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Advances, 2018. 8(13): p. 6978-6987. 10.Dumanli, A.G. and T. Savin, Recent advances in the biomimicry of structural colours. Chemical Society Reviews, 2016. 45(24): p. 6698-6724. 11.Mathews, M., et al., Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals. Journal of Materials Chemistry, 2011. 21(7): p. 2098-2103. 12.Andrzejewska, E., Free radical photopolymerization of multifunctional monomers, in Three-Dimensional Microfabrication Using Two-photon Polymerization. 2016, Elsevier. p. 62-81. 13.Natansohn, A. and P. Rochon, Photoinduced motions in azo-containing polymers. Chemical reviews, 2002. 102(11): p. 4139-4176. 14.Kawatsuki, N., E. Uchida, and T. Yamamoto, Photocontrol of birefringence and in‐plane molecular orientation in copolymer liquid crystal films with 4‐methoxyazobenzene and photo‐cross‐linkable side groups. Macromolecular Chemistry and Physics, 2003. 204(4): p. 584-590. 15.Kaufhold, W., H. Finkelmann, and H.R. Brand, Nematic elastomers, 1. Effect of the spacer length on the mechanical coupling between network anisotropy and nematic order. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1991. 192(11): p. 2555-2579. 16.Warner, M. and E.M. Terentjev, Liquid crystal elastomers. Vol. 120. 2007: Oxford university press. 17.de Gennes, P.-G., Un muscle artificiel semi-rapide. Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy, 1997. 324(5): p. 343-348. 18.De Gennes, P.G., M. Hébert, and R. Kant. Artificial muscles based on nematic gels. in Macromolecular Symposia. 1997. Wiley Online Library. 19.Saed, M.O., et al., Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 2019. 29(3). 20.Yu, L., et al., Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation. Advanced Functional Materials, 2018. 28(37): p. 8. 21.Yang, R. and Y. Zhao, Non-Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie-International Edition, 2017. 56(45): p. 14202-14206. 22.Tian, H.M., et al., Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. Acs Applied Materials & Interfaces, 2018. 10(9): p. 8307-8316. 23.Kohlmeyer, R.R. and J. Chen, Wavelength-Selective, IR Light-Driven Hinges Based on Liquid Crystalline Elastomer Composites. Angewandte Chemie-International Edition, 2013. 52(35): p. 9234-9237. 24.Yue, Y.F., et al., Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nature Communications, 2018. 9. 25.Yu, L., et al., Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. Journal of Materials Chemistry C, 2014. 2(40): p. 8501-8506. 26.Wani, O.M., et al., An Artificial Nocturnal Flower via Humidity-Gated Photoactuation in Liquid Crystal Networks. Advanced Materials, 2019. 31(2). 27.Zhang, Y.S., A. Emelyanenko, and J.H. Liu, Fabrication and optical characterization of imprinted broad‐band photonic films via multiple gradient UV photopolymerization. Journal of Polymer Science Part B: Polymer Physics, 2017. 55(19): p. 1427-1435. 28.Jampani, V.S.R., et al., Micrometer-Scale Porous Buckling Shell Actuators Based on Liquid Crystal Networks. Advanced Functional Materials, 2018. 28(31).
|