跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/09/10 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐康禹
研究生(外文):Kang-Yu Hsu
論文名稱:電流模式能隙電壓參考源
論文名稱(外文):Current Mode Bandgap Voltage Reference
指導教授:劉紹宗
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:能隙電壓參考源正比於溫度的電路電流模式互補式金氧半。
外文關鍵詞:CMOS.bandgap voltage referencecurrent mode
相關次數:
  • 被引用被引用:2
  • 點閱點閱:840
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要內容為設計一個工作電壓可操作在3.3V-5V的能隙電壓參考源(Bandgap voltage reference)。主要是設計一個電路,藉由正比於溫度的電路(PTAT)去補償雙載子電晶體的所產生的負溫度係數。由於一般的能隙電壓參考源需要使用到放大器做為穩定的功用,但如此一來犧牲掉相當大的面積及功率消耗。因此希望藉以電流模式(current mode)的型式搭配上能隙電壓參考源的新組合,能將溫度及工作電壓對輸出電壓的影響降到最低。此電路結構在5V工作電壓下,可達到相當穩定的輸出電壓及良好的工作電壓抵抗能力,此外可以藉由調整電阻的大小,來作輸出電壓的改變。這些表現完全不會輸給以放大器做為回授的電路架構。
此電路是選用聯電0.5微米、兩層poly、三層metal、N型井、互補式金氧半(CMOS)製程。
The objective of this thesis is to design a bandgap voltage reference that can be operated in the range from 3.3V to 5V. The main work is to design a circuit that utilizes a PTAT (proportional to absolute temperature) to compensate the negative temperature coefficient resulting from BJT. The ordinary bandgap voltage reference requires an operational amplifier to stabilize the output voltage. As a result, the circuit will consequently consume considerable area and power dissipation. To circumvent these problems, we propose a current mode bandgap voltage reference, which will not only decrease the temperature effect, but also significantly reduce the power consumption. The proposed current mode bandgap voltage reference can regulate a stabilized output voltage and maintain an excellent resistance to other external variables. Moreover, the output voltage is adjustable by external resistors. Many capability of this design has shown to be superior to those using operational amplifier as feedback.
Our circuit is fabricated bt UMC 0.5μm double-poly triple-metal N-well CMOS process.
中文摘要……………………………………………………………………i
英文摘要……………………………………………………………………ii誌謝…………………………………………………………………………iv目錄………………………………………………………………………….v
圖目錄……………………………………………………………………...vii
表目錄……………………………………………………………………….x
第一章 緒論…………………………………………………………..…….1
1.1 研究背景………………………………………………………………..1
1.2 研究動機……………………………………………………………..…3
1.3 設計流程……………………………………………………………..…5
1.4 設計內容…………………………………………………………..……6
第二章 能隙電壓源電路設計原理…………………………………..…….7
2.1 基本能隙電壓參考源…...……………………………………..……….7
2.2 能隙電壓源電路分析.………………………………………………….9
2.3 改良能隙電壓源………………………………………………….…...13
2.4 電路設計規格……………...……………………………………….…15
2.5 模型參數……………………………………………………..………..17
第三章 能隙電壓源電路製作………………………………………….....18
3.1 電路架構…………………………………………………………..…..18
3.1.1 啟動電路……………….………………………………………...….18
3.1.2 能隙電流源……….……………………………………………...….21
3.1.1 能隙電壓源……………….…………………………………………25
3.2 能隙電流源的改良……………………………………………..……..35
3.3 電路應用………………………………………………………………39
3.4 整體電路及模擬……………………………………………...……….42
3.4.1 整體電路製作……………………………………………….………42
3.4.2 整體電路模擬………………………………………….……………44
第四章 佈局………………………………...……………………………..49
第五章 結論……………………..………………………………………...53
第六章 附錄A………………………………………………….………….56
第七章 附錄B………………………………………………….………….59
參考資料………………………………………………...…………………60
作者簡介……………………………………………………..……….……62
參考文獻:[1] P. R. Gary and R. G. Meyer, Analysis and Design of Analog Integrated circuits. New York: Wisely, 1997.[2] S. Soclof, Design and Applications of Analog Integrated Circuits. New jersey: Prentice Hall, 1991.[3] D. A. Johns and K. Martin, Analog Integrated Circuit Design. Toronto: Wisely, 1997.[4] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York : Oxford, 1987.[5] A. S. Sedra and K. C. Smith, Microelectronic Circuit. New York: Oxford, 1998.[6] A. B. Grebene, Bipolar and MOS Analog Integrated Circuits, CA: Prentice Hall, 1991.[7] A. Hastings, The Art of Analog Layout, New Jersey: Prentice Hall, 2001.[8] L. L. G. Vermaas, C. R. T. de Mori, R. L. Moreno, A. M. Pereira and Edgar Charry R. “A Bandgap Voltage Reference Using Digital CMOS Process,” IEEE International Conference on Electronics, Circuits and Systems, Vol. 2 pp. 303-306, 1998.[9] W. T. Harrison, J. A. Connely, and R. Stair “An Improved Current-Mode CMOS Voltage Reference,” 2001 Southwest Symposium on Mixed-Signal Design, pp. 23-27, 2001.[10] S. Gupta and W. Black “A 3 to 5V CMOS Bandgap Voltage Reference with Novel Trimming,” IEEE 39th Midwest symposium on Circuits and Systems, vol. 2 pp. 969-972, 1996.[11] A. P. Brokaw, “A Simple Three Terminal IC Bandgap Reference,” IEEE J. Solid State Circuits, vol. s.c. 9, pp. 388-393, Dec. 1974. [12] R. Stair, J. A. Connely, and M. Pulkin, “A Current-Mode CMOS Voltage Reference,” 2000 Southwest Symposium on Mixed-Signal Design, pp. 23-26, 2000.[13] M. Sudha and W. T. Holman, “A Low Noise Sub-Bandgap Voltage Reference,” Proceedings of the 40th Midwest Symposium on Circuits and Systems, vol. 1, pp. 193-196, 1998.[14] W. T. Holman, “A New Temperature Compensation Technique for Bandgap Voltage Reference,” 1996 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 385-388, 1996.[15] M. A. T. Sanduleanu, A. J. M. van Tuijl and R. F. Wassenaar, “Accurate Low Power Bandgap Voltage Reference in 0.5μm CMOS Technology,” Electronics Letters , vol. 34, issue 10, pp. 1025-1026, 14 May 1998.[16] H. Babaie and D. E. Zimmerman, “Bandgap Reference Voltage Source,” Twenty-First Southeastern Symposium on System Theory, pp. 541-544, 1989.[17] K. E. Kujik, “A Precision Reference Voltage Source,” IEEE J. Solid-state circuits, June 1973.[18] K. M. Tham and K. Nagaraj “A Low Supply Voltage High PSRR Voltage Reference in CMOS Process,” IEEE J. Solide State Circuits, May 1995.[19] J. Michejda and S. K. Kim “A Precision CMOS Bandgap Reference,” IEEE J. Solide State Circuits, vol. 6, sc-19, Dec 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top