|
[1]R. H. Dennard, “Evolution of the MOSFET dynamic RAM—A personal view,” IEEE Trans. Electron Devices, vol. ED-31, no. 11, pp. 1549-1555, Nov. 1984. [2]J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and future directions for the scaling of dynamic random-access memory (DRAM),” IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 187-212, Mar. 2002. [3]Gordon Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86, no.1, Jan. 1998, pp. 82-85. [4]D. H. Kim, J. Y. Kim, M. Huh, Y. S. Hwang, J. M. Park, D. H. Han, D. I. Kim, M. H. Cho, B. H. Lee, H. K. Hwang, J. W. Song, N. J. Kang, G. W. Ha, S. S. Song, M. S. Shim, S. E. Kim, J. M. Kwon, B. J. Park, H. J. Oh, H. J. Kim, D. S. Woo, M. Y. Jeong, Y. I. Kim, Y. S. Lee, H. J. Kim, J. C. Shin, J. W. Seo, S. S. Jeong, K. H. Yoon, T. H. Ahn, J. B. Lee, Y. W. Hyung, S. J. Park, H. S. Kim, W. T. Choi, G. Y. Jin, Y. G. Park and Kinam Kim, “A Mechanically Enhanced Storage node for virtually unlimited Height (MESH) Capacitor Aiming at sub 70nm DRAMs,” in IEDM Tech. Dig., Dec. 2004, pp. 69-72. [5]A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions For DRAM Memory Cell Technology,” in IEDM Tech. Dig., pp. 355-358, Dec. 1998. [6]D. Temmler, “Multilayer Vertical Stacked Capacitors (MVSTC) for 64Mbit and 256Mbit DRAMs,” in VLSI Symp. Tech. Dig., May 28-30, 1991, pp. 13-14. [7]T. Kaga, T. Kure, H. Shinriki, Y. Kawamoto, F. Murai, T. Nishida, Y. Nakagome, D. Hisamoto, T. Kisu, E. Takeda, and K. Itoh, “Crown-Shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb DRAM’s,” IEEE Trans. Electron Devices, vol. 38, no.2, pp. 255-261, Feb. 1991. [8]M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by LPCVD with in situ HF vapor cleaning and its application to stacked DRAM capacitor fabrication,” IEEE Trans. Electron Devices, vol. 41, no.5, pp. 703-708, Mar. 1994. [9]L. Nesbit, J. Alsmeier, B. Chen, J. DeBrosse, P. Fahey, M. Gall, J. Gambino, S. Gernhardt, H. Ishiuchi, R. Kleinhenz, J. Mandelman, T. Mii, M. Morikado, A. Nitayama, S. Parke, H. Wong, and G. Bronner, “A 0.6μm2 256Mb Trench DRAM Cell With Self-Aligned BuriEd STrap (BEST),” in IEDM Tech. Dig., Dec. 1993, pp. 627-630. [10]H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe, and S. Asai, “A Corrugated Capacitor Cell (CCC),” IEEE Trans. Electron Devices, vol. ED-31, no.6, pp. 746-753, Jan. 1984. [11]N. C.-C. LU, P. E. COTTRELL, W. J. CRAIG, S. DASH, D. L. CRITCHLOW, R. L. MOHLER, B. J. MACHESNEY, T. H. NING, W. P. NOBLE, R. M. PARENT, R. E. SCHEUERLEIN, E. J. SPROGIS, and L. M. TERMAN, “A Substrate-Plate Trench-Capacitor ( SPT) Memory Cell for Dynamic RAM’s,” IEEE J. Solid State Circuits, vol. 21, no. 5, pp. 627-634, Oct. 1986. [12]H. Shinriki, Y. Nishioka, Y. Ohji, and K. Mukai, “Oxidized Ta2O5/Si3N4 Dielectric Films on Poly-Crystalline Si for Dram’s,” IEEE Trans. Electron Devices, vol. 36, NO. 2, pp. 328-332, Feb. 1989. [13]S. W. Yang, W. S. Liao, L. Economikos, A. Guliani, D. Yang, B. Y. Kim, D. Dobuzinsky, and S. Shih, “Structural Demonstration of Cost Effective Isolation Trench Fill for Sub-110nm Vertical Trench DRAM and SOC Applications,” in VLSI Symp. Tech. Dig., Oct. 6-8, 2003, pp. 117-120. [14]W. Mueller, G. Aichmayr, W. Bergner, M. Goldbach, T. Hecht, S. Kudelka, F. Lau, J. Nuetzel, A. Orth, T. Schloesser, A. Scholz, A. Sieck, A. Spitzer, M. Strasser, P. F. Wand, S. Wege, and R. Weis, “Trench DRAM Technology for the 50nm Node and Beyond,” in Int. Symp. VLSI Tech. Sys. Appl., Apr. 24-26, 2006, pp. 1-2. [15]H. Sumami, “Development of three-dimensional MOS structures from trench-capacitor DRAM cell to pillar-type transistor,” in Proc. 9th Int. Conf. on Solid-State and Integrated-Circuit Technology, (ICSICT 2008), Beijing, China, Oct. 20-23, 2008, pp. 583-586. [16]M. R. TACK, M. GAO, C. L. CLAEYS, and G. J. DECLERCK, “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures,” IEEE Trans. Electron Devices, vol. 37, no. 5, pp. 1373-1382 May 1990. [17]H. -J. Wann, and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate,” in IEDM Tech. Dig., pp. 635-638, Dec. 1993. [18]S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept,” in Proc. IEEE Int. SOI Conf., Oct. 2001 , pp. 153-154. [19]P. Fazan, S. Okhonin, M. Nagoga, J. M. Sallese, L. Portmann, R. Ferrant, M. Kayal, M. Pastre, M. Blagojevic, A. Borschberg, and M. Declercq, “Capacitor-less 1T-transistor DRAM ” in Proc. IEEE Int. SOI Conf., Oct. 2002, pp. 10-13. [20]P. C. Fazan, S. Okhonin, M. Nagoga, and J.-M. Sallese, “A Simple 1-Transistor Capacitor-less Memory Cell for High Performance Embedded DRAMs,” in Proc. IEEE Custom Integrated Circuit Conf., 2002, pp. 99-102. [21]N. Collaert, M. Aoulaiche, M. Rakowski, B. De Wachter, K. Bourdelle, B.-Y. Nguyen, F. Boedta, D. Delprat, and M. Jurczak, “Analysis of sense margin and reliability of 1T-DRAM fabricated on thin-film UTBOX substrates,” in Proc. IEEE Int. SOI Conf., Oct. 2009, pp. 1-2. [22]M. G. Ertosun, K.-Y. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat, “Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electrons,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 405-407, May 2010. [23]K.-H. Park, C. M. Park, S. H. Kong, and J.-H. Lee, “Novel Double-Gate 1T-DRAM Cell Using Nonvolatile Memory Functionality for High-Performance and Highly Scalable Embedded DRAMs,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 614-619, Mar. 2010. [24]W. Lee, W. Y. Choi, “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement,” IEEE Trans. on Nanotechnology, vol. 10, no. 3, pp. 462-466, May 2011. [25]J. S. Shin, H. Choi, H. Bae, J. Jaeman, D. Yun, E. Hong, H. Kim, Dae, and D. M. Kim, “Vertical-Gate Si SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 134-136, Feb. 2012. [26]S.-W. Ryu, J.-W. Han, C.-J. Kim, and Y.-K. Choi, “Investigation of Isolation-Dielectric Effects of PDSOI FinFET on Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3232-3235, Dec. 2009. [27]J.-W. Han, S.-W. Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim and Y.-K. Choi, “A Bulk FinFET Unified-RAM (URAM) Cell for Multifunctioning NVM and Capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 632-634, Jun. 2008. [28]J.-K. Park, J.-H. Yang and W.-J. Cho, “Channel Recessed One Transistor Dynamic Random Access Memory with SiO2 Si3N4 SiO2 Gate Dielectric,” Japanese Journal of Applied Physics, vol. 51, no. 6s, pp. 06FE08-1-06 FE08-4, Jun. 2012. [29]J.-K. Park, and W.-J. Cho, “Dual Read Method by Capacitance Coupling Effect for Mode-Disturbance-Free Operation in Channel-Recessed Multifunctional Memory,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1708-1710, Dec. 2012. [30]J.-Y. Choi, and J. G. Fossum, “Analysis and Control of Floating-Body Bipolar Effects in Fully Depleted Submicrometer SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1384-1391, Jun. 1991. [31]M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating Body Effects in Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 44, no. 12, pp. 2234-2241, Dec. 1997. [32]M. Lee, T. Moon, and S. Kim, “Floating Body Effect in Partially Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications,” IEEE Trans. on Nanotechnology, vol. 11, no. 2, pp. 355-359, Mar. 2012. [33]S. Puget, G. Bossu, C. Fenouiller-Beranger, P. Perreau, P. Masson, P. Mazoyer, P. Lorenzini, J.-M. Portal, R. Bouchakour, and T. Skotnicki, “FDSOI floating body cell eDRAM using gate-induced drain-leakage (GIDL) write current for high speed and low power applications,” IEEE Int. Memory workshop, May 2009, pp. 1-2. [34]T. Tanaka, E. Yoshida, and T. Miyashita, “Scalability Study on a Capacitorless 1T-DRAM: From Single-gate PD-SOI to Double-gate FinDRAM,” in IEDM Tech. Dig., pp. 919-922, Dec. 2004. [35]T. Hamamoto, Y. Minami, T. Shino, A. Sakamoto, T. Higashi, N. Kusunoki, K. Fujita, K. Hatsuda, T. Ohsawa, N. Aoki, H. Tanimoto, M. Morikado, H. Nakajima, K. Inoh, and A. Nitayama, “A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology Node for Embedded Applications,” in IEEE Int. Conf. on Integrated Circuit Design and Technology, 2006, pp. 1-6. [36]S. Okhonin, M. Nagoga, E. Carman, R. Beffa, and E. Faraon, “New Generation of Z-RAM,” in IEDM Tech. Dig., Dec. 2007, pp. 925-928. [37]J. P. Colinge, “Reduction of Kink Effect in Thin-Film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 9, no. 2, pp. 97-99, Feb. 1988. [38]J. -T. Lin, K. -D. Huang, and B. -T. Jheng, “Performances of a Capacitorless 1T-DRAM Using Polycrystalline Silicon Thin-Film Transistors With Trenched Body,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1222-1225, Nov. 2008. [39]J. -H. Han, S. -W. Ryu, D. -H. Kim, C. -J. Kim, S. Kim, D. -I. Moon, S. -J. Choi, and Y. -K. Choi, “Fully Depleted Polysilicon TFTs for Capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 742-744, Jul. 2009. [40]J. -W. Han, C. -J. Kim, S. -J. Choi, D. -H. Kim, D. -I. Moon, and Y. -K. Choi, “Gate-to-Source/Drain Nonoverlap Device for Soft-Program Immune Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 5, pp. 544-546, May 2009. [41]J. -W. Han, S. -W. Ryu, D. -H. Kim, and Y. -K. Choi, “Polysilicon Channel TFT With Separated Double-Gate for Unified RAM (URAM)—Unified Function for Nonvolatile SONOS Flash and High-Speed Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 601-607, Mar. 2010. [42]E. Yoshida, and T. Tanaka, “A Design of a Capacitorless 1T-DRAM Cell Using Gate-Induced Drain Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” in IEDM Tech. Dig., Dec.2003, pp. 37.6.1-37.6.4. [43]E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692-697, Apr. 2006. [44]Z. Lu, J. G. Fossum, J.-W. Yang, H. R. Harris, V. P. Trivedi, M. Chu, and S. E. Thompson, “A Simplified Superior Floating-Body/Gate DRAM Cell,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 282-284, Mar. 2009. [45]G. Kim, S. W. Kim, J. Y. Song, J. P. Kim, K.-C. Ryoo, J.-H. Oh, J. H. Park, H. W. Kim, and B.-G. Park, “Body-Raised Double-Gate Structure for 1T DRAM,” in Nanotechnology Materials and Devices Conf., Jun. 2009, pp. 259-263 [46]J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-Induced Drain-Leakage (GIDL) Programming Method for Soft-Programming-Free Operation in Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 2, pp. 189-191, Feb. 2009. [47]J.-W. Han, D.-I. Moon, D.-H. Kim and Y.-K. Choi, “Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1108-1110, Oct. 2009. [48]Z. Zhou, J. G. Fossum, and Z. Lu, “Physical Insights on BJT-Based 1T DRAM Cells,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 565-567, May 2009. [49]S.-J. Choi, J.-W. Han, D.-I. Moon, and Y.-K. Choi, “Analysis and Evaluation of a BJT-Based 1T-DRAM,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 393-395, May 2010. [50]G. Giusi, M. A. Alam, F. Crupi, and S. Pierro, “Bipolar Mode Operation and Scalability of Double-Gate Capacitorless 1T-DRAM Cells,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1743-1750, Aug. 2010. [51]D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 909-911, Sep. 2010. [52]M. Aoulaiche, N. Collaert, R. Degraeve, Z. Lu, B.D. Wachter, G. Groeseneken, M. Jurczak, and L. Altimime, “BJT-Mode Endurance on a 1T-RAM Bulk FinFET Device,” IEEE Trans. Electron Devices, vol. 31, no. 12, pp. 1380-1382, Dec. 2010. [53]Sentaurus User’s Manual, ver. H-2013.03, Synopsys, Inc. [54]A. Valletta, P. Gaucci, L. Mariucci, G. Fortunato, and F. Templier, ““Hump” characteristics and edge effects in polysilicon thin film transistors,” Appl. Phys. Lett., vol. 104, no.12, pp. 124511-1-1245-6, 2008. [55]J.-W. Han, S.-W. Ryu, C. Kim, S. Kim, M. Im, S. J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “A Unified-RAM (URAM) Cell for Multi-Functioning Capacitorless DRAM and NVM,” in IEDM Tech. Dig., Dec. 2007, pp. 929-932. [56]J.-W. Han, S.-W. Ryu, C.-J. Kim, S. Kim, M. Im, S. J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. Ho Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Partially Depleted SONOS FinFET for Unified RAM (URAM)—Unified Function for High-Speed 1T DRAM and Nonvolatile Memory,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 781-783, Jun. 2008. [57]M. G. Ertosun, P. Kapur, and K. C. Saraswat, “A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1405-1407, Jun. 2008. [58]M. G. Ertosun, and K. C. Saraswat, “Investigation of Capacitorless Double-Gate Single-Transistor DRAM: With and Without Quantum Well,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 608-613, Mar. 2010. [59]J.-W. Han, S.-W. Ryu, C. Kim, J.-H. Ahn, S.-J. Choi, K. J. Choi, B. J. Cho, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Energy band engineered unified-RAM (URAM) for multi-functioning 1T-DRAM and NVM,” in IEDM Tech. Dig., Dec. 2008, pp. 1-4. [60]J.-W. Han, S,-W, Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, K. J. Choi, B, J, Cho, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Band offset FinFET-based URAM (Unified-RAM) built on SiC for multi-functioning NVM and capacitorless 1T-DRAM,” in Proc. Symp. VLSI Technol., Jun. 2008, pp. 200-201. [61]M. G. Ertosun, H. Cho, P. Kapur, and K. C. Saraswat, “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 615-617, Jun. 2008. [62]N. Collaert, M. Aoulaiche, M. Rakowski, A. Redolfi, B. D. Wachter, J. Van Houdt, and M. Jurczak, “Optimizing the Readout Bias for the Capacitorless 1T Bulk FinFET RAM Cell,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1377-1379, Dec. 2009. [63]D.-I. Moon, S.-J. Choi, C.-J. Kim, J.-Y. Kim, J.-S. Lee, J.-S. Oh, G.-S. Lee Y.-C. Park, D.-W. Hong, D.-W. Lee, Y.-S. Kim, J.-W. Kim, J.-W. Han, and Y.-K. Choi, “Ultimately scaled 20nm unified-RAM,” in IEDM Tech. Dig., Dec. 2010, pp. 12.2.1-12.2.4. [64]S. Lee, J. S. Shin, J. Jang, H. Bae, D. Yun, J. Lee, D. H. Kim, and D. M. Kim, “A Novel capacitorless DRAM cell using superlattice bandgap-engineered (SBE) structure with 30-nm channel length,” IEEE Trans. Electron Devices, vol. 10, no. 5, pp. 1023-1030, Sep. 2011. [65]J.-T. Lin, P.-H. Lin, Y.-C. Eng, and Y.-R. Chen, “Novel Vertical SOI-Based 1T-DRAM With Trench Body Structure,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1872-1877, Jun. 2013. [66]M. Aoulaiche, A. Bravaix, E. Simoen, C. Caillat, M. Cho, L. Witters, P. Blomme, P. Fazan, G. Groeseneken, and M. Jurczak, “Endurance of One Transistor Floating Body RAM on UTBOX SOI,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 801-805, Mar. 2014. [67]D.-I. Moon, J.-Y. Kim, J.-B. Moon, D.-O. Kim, and Y.-K. Choi, “Evolution of Unified-RAM: 1T-DRAM and BE-SONOS Built on a Highly Scaled Vertical Channel,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 60-65, Jan. 2014.
|