跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾士權
研究生(外文):Shih-Chuan Tseng
論文名稱:新穎源極抬高式金氧半場效單/雙閘極電晶體在無電容式動態隨機存取記憶體之應用
論文名稱(外文):Novel Structures of Single/Double Gate MOSFET with Raised Source for Capacitor-less DRAM Application
指導教授:林吉聰
指導教授(外文):Jyi-Tsong Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:145
中文關鍵詞:短通道效應資料儲存時間矽覆絕緣電晶體雙閘極無電容式單電晶體動態隨機存取記憶體可程式規劃窗
外文關鍵詞:SOI MOSFET1T-DRAMData Retention TimeShort Channel EffectsDouble-gate MOSFETProgramming Window
相關次數:
  • 被引用被引用:1
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
我們提出了一個製程非常簡單且完全相容於現有CMOS製程技術的新穎性元件,我們稱它為源極抬高式電晶體(Source-Top MOSFET, STMOSFET),並且應用於無電容式單電晶體動態隨機存取記憶體(Capacitor-less One Transistor Dynamic Random Access Memory, 1T-DRAM )。利用新穎架構向上延伸的源極抬高區域,使其不僅能在有限的面積之下,達到長通道的效果,而且汲極高電場不會侵入到垂直通道的部份,因此可以有效抑制短通道效應,增強閘極控制力。除此之外因源極抬高的架構,可以在不增加面積的前提下,我們得到了足夠大的假中性區域來進行電荷的儲存,且因電荷儲存區也遠離汲極的高電場,因此累積的電洞不容易受到汲極電場的擾動,這都使記憶體特性可程式規劃窗(Programming Window, PW)與資料儲存時間(Retention Time, RT)大大的提升,與傳統1T-DRAM比較之下分別改善為56.43 %與56.63 %。再者,汲極端仍保有超薄本體架構,電流特性跟傳統全空乏式矽覆絕緣(Fully Depleted Silicon on Insulator, FD-SOI)元件有相同的優點,P-N接面也大大減少。最後,因為源極與汲極不在同一水平面上,可以減少空乏區相互接觸的機會,所以可以有效減輕發生穿透效應的機會(Punch through effect)。
另一方面,我們也將源極抬高式電晶體做進一步改良。由於改變製程步驟便可以使兩側的閘極同時形成,我們稱為源極抬高式雙閘極電晶體(Double-Gate MOSFET with Source-Top, STDG MOSFET),此雙閘極架構也有源極抬高式電晶體的各項優點。在源極抬高式雙閘極電晶體基本特性方面,有優秀的DIBL值(28.98 mV/V)與次臨界擺幅(66.95 mV/dec)之元件;在作為超小尺寸之1T-DRAM,可得到可程式規劃窗與資料儲存時間最大值分別為178.63 μA/μm與57.84 ms的記憶體元件。相較於其他研究團隊,其可程式規劃窗有相當優秀的表現。
We propose novel 1T-DRAM cells with raised source structure. The cell using the raised source region can achieve the characteristics of long gate length one in a limited area. And, it can suppress short channel effects because the electric field of drain encroaches to vertical channel decreasingly. All these methods can improve the gate controllability. In addition, the raised source region possesses a larger data storage region without increasing the device area. Besides, the programming window can be improved 56.43 % compared with the conventional planar MOSFET, and the retention time can also be improved 56.63 %. Besides, the drain side still maintains the advantages of ultra-thin body structure, and the area of P-N junction is reduced greatly. Finally, since the raised source structure, the drain and source depletion regions of the cell could not to be contacted together easily so that the device does not appear punch through effect even the high drain bias is applied.
On the other hand, we also propose the double-gate MOSFET with source-top structure simultaneously. We name it as the STDG MOSFET. By controlling the bias of the second gate, we can operate the device as a MOSFET or the 1T-DRAM friendly. Be a MOSFET, the device exhibits excellent SS = 66.95 mV/dec and DIBL = 28.98 mV/V. Whileas, be a 1T-DRAM we find the maximum value of the programming window (178.63 μA/μm) and the retention time (57.84 ms). STDG MOSFET has excellent programming window compared with those done by the other research teams.
論文審定書....................................................................................................i
英文論文審定書...........................................................................................ii
致謝..............................................................................................................iii
摘要..............................................................................................................iv
Abstract.........................................................................................................v
第一章 導論 1
1.1 研究背景 1
1.2 1T-DRAM之論文探討 7
1.3 動機 13
第二章 操作原理 15
2.1 浮體效應 15
2.2 1T-DRAM之操作機制 17
2.2.1 撞擊游離機制 17
2.2.2 閘極引致汲極漏電流寫入機制 20
2.2.3 BJT讀取機制 23
第三章 元件製作 25
3.1 源極抬高式架構理想模擬製程 25
3.1.1 源極抬高式電晶體 25
3.1.2 源極抬高式雙閘極電晶體 25
3.2 模擬元件架構尺寸說明 28
3.3 實際元件製作 29
第四章 研究方法與結果討論 33
4.1 研究方法 33
4.2 記憶體特性之定義 36
4.2.1 可程式規劃窗(Programming Window) 36
4.2.2 資料儲存時間(Data Retention Time) 37
4.3 源極抬高式電晶體架構之探討 38
4.3.1 源極抬高式電晶體之基本特性分析 39
4.3.2 源極抬高式電晶體之記憶體特性分析 44
4.4 源極抬高式電晶體與傳統SOI電晶體之特性分析 51
4.4.1 源極抬高式電晶體與傳統SOI電晶體之特性探討(相同元件面積) 51
4.4.2 源極抬高式電晶體與傳統SOI電晶體之特性探討(相同通道長度) 74
4.5 源極抬高式雙閘極電晶體架構之探討 87
4.5.1 源極抬高式雙閘極電晶體之基本特性分析 87
4.5.2 源極抬高式雙閘極電晶體之記憶體特性分析 94
4.6 近年各1T-DRAM論文之記憶體特性探討 110
4.7 元件實作結果與量測 112
第五章 結論與未來發展 115
5.1 結論 115
5.2 未來展望 117
參考文獻 118
論文著述 126
個人得獎 129
[1]R. H. Dennard, “Evolution of the MOSFET dynamic RAM—A personal view,” IEEE Trans. Electron Devices, vol. ED-31, no. 11, pp. 1549-1555, Nov. 1984.
[2]J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and future directions for the scaling of dynamic random-access memory (DRAM),” IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 187-212, Mar. 2002.
[3]Gordon Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86, no.1, Jan. 1998, pp. 82-85.
[4]D. H. Kim, J. Y. Kim, M. Huh, Y. S. Hwang, J. M. Park, D. H. Han, D. I. Kim, M. H. Cho, B. H. Lee, H. K. Hwang, J. W. Song, N. J. Kang, G. W. Ha, S. S. Song, M. S. Shim, S. E. Kim, J. M. Kwon, B. J. Park, H. J. Oh, H. J. Kim, D. S. Woo, M. Y. Jeong, Y. I. Kim, Y. S. Lee, H. J. Kim, J. C. Shin, J. W. Seo, S. S. Jeong, K. H. Yoon, T. H. Ahn, J. B. Lee, Y. W. Hyung, S. J. Park, H. S. Kim, W. T. Choi, G. Y. Jin, Y. G. Park and Kinam Kim, “A Mechanically Enhanced Storage node for virtually unlimited Height (MESH) Capacitor Aiming at sub 70nm DRAMs,” in IEDM Tech. Dig., Dec. 2004, pp. 69-72.
[5]A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions For DRAM Memory Cell Technology,” in IEDM Tech. Dig., pp. 355-358, Dec. 1998.
[6]D. Temmler, “Multilayer Vertical Stacked Capacitors (MVSTC) for 64Mbit and 256Mbit DRAMs,” in VLSI Symp. Tech. Dig., May 28-30, 1991, pp. 13-14.
[7]T. Kaga, T. Kure, H. Shinriki, Y. Kawamoto, F. Murai, T. Nishida, Y. Nakagome, D. Hisamoto, T. Kisu, E. Takeda, and K. Itoh, “Crown-Shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb DRAM’s,” IEEE Trans. Electron Devices, vol. 38, no.2, pp. 255-261, Feb. 1991.
[8]M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by LPCVD with in situ HF vapor cleaning and its application to stacked DRAM capacitor fabrication,” IEEE Trans. Electron Devices, vol. 41, no.5, pp. 703-708, Mar. 1994.
[9]L. Nesbit, J. Alsmeier, B. Chen, J. DeBrosse, P. Fahey, M. Gall, J. Gambino, S. Gernhardt, H. Ishiuchi, R. Kleinhenz, J. Mandelman, T. Mii, M. Morikado, A. Nitayama, S. Parke, H. Wong, and G. Bronner, “A 0.6μm2 256Mb Trench DRAM Cell With Self-Aligned BuriEd STrap (BEST),” in IEDM Tech. Dig., Dec. 1993, pp. 627-630.
[10]H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe, and S. Asai, “A Corrugated Capacitor Cell (CCC),” IEEE Trans. Electron Devices, vol. ED-31, no.6, pp. 746-753, Jan. 1984.
[11]N. C.-C. LU, P. E. COTTRELL, W. J. CRAIG, S. DASH, D. L. CRITCHLOW, R. L. MOHLER, B. J. MACHESNEY, T. H. NING, W. P. NOBLE, R. M. PARENT, R. E. SCHEUERLEIN, E. J. SPROGIS, and L. M. TERMAN, “A Substrate-Plate Trench-Capacitor ( SPT) Memory Cell for Dynamic RAM’s,” IEEE J. Solid State Circuits, vol. 21, no. 5, pp. 627-634, Oct. 1986.
[12]H. Shinriki, Y. Nishioka, Y. Ohji, and K. Mukai, “Oxidized Ta2O5/Si3N4 Dielectric Films on Poly-Crystalline Si for Dram’s,” IEEE Trans. Electron Devices, vol. 36, NO. 2, pp. 328-332, Feb. 1989.
[13]S. W. Yang, W. S. Liao, L. Economikos, A. Guliani, D. Yang, B. Y. Kim, D. Dobuzinsky, and S. Shih, “Structural Demonstration of Cost Effective Isolation Trench Fill for Sub-110nm Vertical Trench DRAM and SOC Applications,” in VLSI Symp. Tech. Dig., Oct. 6-8, 2003, pp. 117-120.
[14]W. Mueller, G. Aichmayr, W. Bergner, M. Goldbach, T. Hecht, S. Kudelka, F. Lau, J. Nuetzel, A. Orth, T. Schloesser, A. Scholz, A. Sieck, A. Spitzer, M. Strasser, P. F. Wand, S. Wege, and R. Weis, “Trench DRAM Technology for the 50nm Node and Beyond,” in Int. Symp. VLSI Tech. Sys. Appl., Apr. 24-26, 2006, pp. 1-2.
[15]H. Sumami, “Development of three-dimensional MOS structures from trench-capacitor DRAM cell to pillar-type transistor,” in Proc. 9th Int. Conf. on Solid-State and Integrated-Circuit Technology, (ICSICT 2008), Beijing, China, Oct. 20-23, 2008, pp. 583-586.
[16]M. R. TACK, M. GAO, C. L. CLAEYS, and G. J. DECLERCK, “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures,” IEEE Trans. Electron Devices, vol. 37, no. 5, pp. 1373-1382 May 1990.
[17]H. -J. Wann, and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate,” in IEDM Tech. Dig., pp. 635-638, Dec. 1993.
[18]S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept,” in Proc. IEEE Int. SOI Conf., Oct. 2001 , pp. 153-154.
[19]P. Fazan, S. Okhonin, M. Nagoga, J. M. Sallese, L. Portmann, R. Ferrant, M. Kayal, M. Pastre, M. Blagojevic, A. Borschberg, and M. Declercq, “Capacitor-less 1T-transistor DRAM ” in Proc. IEEE Int. SOI Conf., Oct. 2002, pp. 10-13.
[20]P. C. Fazan, S. Okhonin, M. Nagoga, and J.-M. Sallese, “A Simple 1-Transistor Capacitor-less Memory Cell for High Performance Embedded DRAMs,” in Proc. IEEE Custom Integrated Circuit Conf., 2002, pp. 99-102.
[21]N. Collaert, M. Aoulaiche, M. Rakowski, B. De Wachter, K. Bourdelle, B.-Y. Nguyen, F. Boedta, D. Delprat, and M. Jurczak, “Analysis of sense margin and reliability of 1T-DRAM fabricated on thin-film UTBOX substrates,” in Proc. IEEE Int. SOI Conf., Oct. 2009, pp. 1-2.
[22]M. G. Ertosun, K.-Y. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat, “Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electrons,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 405-407, May 2010.
[23]K.-H. Park, C. M. Park, S. H. Kong, and J.-H. Lee, “Novel Double-Gate 1T-DRAM Cell Using Nonvolatile Memory Functionality for High-Performance and Highly Scalable Embedded DRAMs,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 614-619, Mar. 2010.
[24]W. Lee, W. Y. Choi, “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement,” IEEE Trans. on Nanotechnology, vol. 10, no. 3, pp. 462-466, May 2011.
[25]J. S. Shin, H. Choi, H. Bae, J. Jaeman, D. Yun, E. Hong, H. Kim, Dae, and D. M. Kim, “Vertical-Gate Si SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 134-136, Feb. 2012.
[26]S.-W. Ryu, J.-W. Han, C.-J. Kim, and Y.-K. Choi, “Investigation of Isolation-Dielectric Effects of PDSOI FinFET on Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3232-3235, Dec. 2009.
[27]J.-W. Han, S.-W. Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim and Y.-K. Choi, “A Bulk FinFET Unified-RAM (URAM) Cell for Multifunctioning NVM and Capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 632-634, Jun. 2008.
[28]J.-K. Park, J.-H. Yang and W.-J. Cho, “Channel Recessed One Transistor Dynamic Random Access Memory with SiO2 Si3N4 SiO2 Gate Dielectric,” Japanese Journal of Applied Physics, vol. 51, no. 6s, pp. 06FE08-1-06 FE08-4, Jun. 2012.
[29]J.-K. Park, and W.-J. Cho, “Dual Read Method by Capacitance Coupling Effect for Mode-Disturbance-Free Operation in Channel-Recessed Multifunctional Memory,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1708-1710, Dec. 2012.
[30]J.-Y. Choi, and J. G. Fossum, “Analysis and Control of Floating-Body Bipolar Effects in Fully Depleted Submicrometer SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1384-1391, Jun. 1991.
[31]M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating Body Effects in Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 44, no. 12, pp. 2234-2241, Dec. 1997.
[32]M. Lee, T. Moon, and S. Kim, “Floating Body Effect in Partially Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications,” IEEE Trans. on Nanotechnology, vol. 11, no. 2, pp. 355-359, Mar. 2012.
[33]S. Puget, G. Bossu, C. Fenouiller-Beranger, P. Perreau, P. Masson, P. Mazoyer, P. Lorenzini, J.-M. Portal, R. Bouchakour, and T. Skotnicki, “FDSOI floating body cell eDRAM using gate-induced drain-leakage (GIDL) write current for high speed and low power applications,” IEEE Int. Memory workshop, May 2009, pp. 1-2.
[34]T. Tanaka, E. Yoshida, and T. Miyashita, “Scalability Study on a Capacitorless 1T-DRAM: From Single-gate PD-SOI to Double-gate FinDRAM,” in IEDM Tech. Dig., pp. 919-922, Dec. 2004.
[35]T. Hamamoto, Y. Minami, T. Shino, A. Sakamoto, T. Higashi, N. Kusunoki, K. Fujita, K. Hatsuda, T. Ohsawa, N. Aoki, H. Tanimoto, M. Morikado, H. Nakajima, K. Inoh, and A. Nitayama, “A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology Node for Embedded Applications,” in IEEE Int. Conf. on Integrated Circuit Design and Technology, 2006, pp. 1-6.
[36]S. Okhonin, M. Nagoga, E. Carman, R. Beffa, and E. Faraon, “New Generation of Z-RAM,” in IEDM Tech. Dig., Dec. 2007, pp. 925-928.
[37]J. P. Colinge, “Reduction of Kink Effect in Thin-Film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 9, no. 2, pp. 97-99, Feb. 1988.
[38]J. -T. Lin, K. -D. Huang, and B. -T. Jheng, “Performances of a Capacitorless 1T-DRAM Using Polycrystalline Silicon Thin-Film Transistors With Trenched Body,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1222-1225, Nov. 2008.
[39]J. -H. Han, S. -W. Ryu, D. -H. Kim, C. -J. Kim, S. Kim, D. -I. Moon, S. -J. Choi, and Y. -K. Choi, “Fully Depleted Polysilicon TFTs for Capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 742-744, Jul. 2009.
[40]J. -W. Han, C. -J. Kim, S. -J. Choi, D. -H. Kim, D. -I. Moon, and Y. -K. Choi, “Gate-to-Source/Drain Nonoverlap Device for Soft-Program Immune Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 5, pp. 544-546, May 2009.
[41]J. -W. Han, S. -W. Ryu, D. -H. Kim, and Y. -K. Choi, “Polysilicon Channel TFT With Separated Double-Gate for Unified RAM (URAM)—Unified Function for Nonvolatile SONOS Flash and High-Speed Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 601-607, Mar. 2010.
[42]E. Yoshida, and T. Tanaka, “A Design of a Capacitorless 1T-DRAM Cell Using Gate-Induced Drain Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” in IEDM Tech. Dig., Dec.2003, pp. 37.6.1-37.6.4.
[43]E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692-697, Apr. 2006.
[44]Z. Lu, J. G. Fossum, J.-W. Yang, H. R. Harris, V. P. Trivedi, M. Chu, and S. E. Thompson, “A Simplified Superior Floating-Body/Gate DRAM Cell,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 282-284, Mar. 2009.
[45]G. Kim, S. W. Kim, J. Y. Song, J. P. Kim, K.-C. Ryoo, J.-H. Oh, J. H. Park, H. W. Kim, and B.-G. Park, “Body-Raised Double-Gate Structure for 1T DRAM,” in Nanotechnology Materials and Devices Conf., Jun. 2009, pp. 259-263
[46]J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-Induced Drain-Leakage (GIDL) Programming Method for Soft-Programming-Free Operation in Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 2, pp. 189-191, Feb. 2009.
[47]J.-W. Han, D.-I. Moon, D.-H. Kim and Y.-K. Choi, “Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1108-1110, Oct. 2009.
[48]Z. Zhou, J. G. Fossum, and Z. Lu, “Physical Insights on BJT-Based 1T DRAM Cells,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 565-567, May 2009.
[49]S.-J. Choi, J.-W. Han, D.-I. Moon, and Y.-K. Choi, “Analysis and Evaluation of a BJT-Based 1T-DRAM,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 393-395, May 2010.
[50]G. Giusi, M. A. Alam, F. Crupi, and S. Pierro, “Bipolar Mode Operation and Scalability of Double-Gate Capacitorless 1T-DRAM Cells,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1743-1750, Aug. 2010.
[51]D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 909-911, Sep. 2010.
[52]M. Aoulaiche, N. Collaert, R. Degraeve, Z. Lu, B.D. Wachter, G. Groeseneken, M. Jurczak, and L. Altimime, “BJT-Mode Endurance on a 1T-RAM Bulk FinFET Device,” IEEE Trans. Electron Devices, vol. 31, no. 12, pp. 1380-1382, Dec. 2010.
[53]Sentaurus User’s Manual, ver. H-2013.03, Synopsys, Inc.
[54]A. Valletta, P. Gaucci, L. Mariucci, G. Fortunato, and F. Templier, ““Hump” characteristics and edge effects in polysilicon thin film transistors,” Appl. Phys. Lett., vol. 104, no.12, pp. 124511-1-1245-6, 2008.
[55]J.-W. Han, S.-W. Ryu, C. Kim, S. Kim, M. Im, S. J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “A Unified-RAM (URAM) Cell for Multi-Functioning Capacitorless DRAM and NVM,” in IEDM Tech. Dig., Dec. 2007, pp. 929-932.
[56]J.-W. Han, S.-W. Ryu, C.-J. Kim, S. Kim, M. Im, S. J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. Ho Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Partially Depleted SONOS FinFET for Unified RAM (URAM)—Unified Function for High-Speed 1T DRAM and Nonvolatile Memory,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 781-783, Jun. 2008.
[57]M. G. Ertosun, P. Kapur, and K. C. Saraswat, “A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1405-1407, Jun. 2008.
[58]M. G. Ertosun, and K. C. Saraswat, “Investigation of Capacitorless Double-Gate Single-Transistor DRAM: With and Without Quantum Well,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 608-613, Mar. 2010.
[59]J.-W. Han, S.-W. Ryu, C. Kim, J.-H. Ahn, S.-J. Choi, K. J. Choi, B. J. Cho, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Energy band engineered unified-RAM (URAM) for multi-functioning 1T-DRAM and NVM,” in IEDM Tech. Dig., Dec. 2008, pp. 1-4.
[60]J.-W. Han, S,-W, Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, K. J. Choi, B, J, Cho, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Band offset FinFET-based URAM (Unified-RAM) built on SiC for multi-functioning NVM and capacitorless 1T-DRAM,” in Proc. Symp. VLSI Technol., Jun. 2008, pp. 200-201.
[61]M. G. Ertosun, H. Cho, P. Kapur, and K. C. Saraswat, “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 615-617, Jun. 2008.
[62]N. Collaert, M. Aoulaiche, M. Rakowski, A. Redolfi, B. D. Wachter, J. Van Houdt, and M. Jurczak, “Optimizing the Readout Bias for the Capacitorless 1T Bulk FinFET RAM Cell,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1377-1379, Dec. 2009.
[63]D.-I. Moon, S.-J. Choi, C.-J. Kim, J.-Y. Kim, J.-S. Lee, J.-S. Oh, G.-S. Lee Y.-C. Park, D.-W. Hong, D.-W. Lee, Y.-S. Kim, J.-W. Kim, J.-W. Han, and Y.-K. Choi, “Ultimately scaled 20nm unified-RAM,” in IEDM Tech. Dig., Dec. 2010, pp. 12.2.1-12.2.4.
[64]S. Lee, J. S. Shin, J. Jang, H. Bae, D. Yun, J. Lee, D. H. Kim, and D. M. Kim, “A Novel capacitorless DRAM cell using superlattice bandgap-engineered (SBE) structure with 30-nm channel length,” IEEE Trans. Electron Devices, vol. 10, no. 5, pp. 1023-1030, Sep. 2011.
[65]J.-T. Lin, P.-H. Lin, Y.-C. Eng, and Y.-R. Chen, “Novel Vertical SOI-Based 1T-DRAM With Trench Body Structure,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1872-1877, Jun. 2013.
[66]M. Aoulaiche, A. Bravaix, E. Simoen, C. Caillat, M. Cho, L. Witters, P. Blomme, P. Fazan, G. Groeseneken, and M. Jurczak, “Endurance of One Transistor Floating Body RAM on UTBOX SOI,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 801-805, Mar. 2014.
[67]D.-I. Moon, J.-Y. Kim, J.-B. Moon, D.-O. Kim, and Y.-K. Choi, “Evolution of Unified-RAM: 1T-DRAM and BE-SONOS Built on a Highly Scaled Vertical Channel,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 60-65, Jan. 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊