跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐任弘
研究生(外文):Ou, Jen-Hung
論文名稱:高透光度與高靈敏性氧化鋅薄膜電晶體之奈米金粒子共軛光檢測器
論文名稱(外文):Transparent, high-sensitive zinc oxide-based thin-film transistors with gold nanoparticles structure for visible photodetecting devices
指導教授:柯富祥柯富祥引用關係
指導教授(外文):Ko, Fu-Hsiang
口試委員:陳俊淇游信強
口試委員(外文):Chen, Chun-ChiYou, Hsin-Chiang
口試日期:2017-08-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:90
中文關鍵詞:光電晶體氧化鋅金奈米粒表面電漿共振旋轉塗佈法氧化銦氟透明基板
外文關鍵詞:PhototransistorZinc oxideGold nanoparticleSurface plasmon resonanceSpin-coating methodFluorine tin oxide glass substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用簡易、低溫製程與無毒氧化鋅半導體材料,成功製作出可在低電壓操作下的薄膜電晶體,並結合金奈米粒,使其光檢測範圍延伸至可見光波段。
本研究之薄膜電晶體元件在非工作區間時有較小的漏電流,在工作區間時有相對較大的飽和電流,顯示出此元件具有良好的開關特性;電晶體的通道層材料決定了其電性表現的優劣,此元件選用了氧化鋅半導體材料,因其無毒性、高透光度且具有良好載子遷移率;於製備上,沉積氧化鋅薄膜之製程也選用可在常溫常壓下完成的旋轉塗佈法;本研究欲將薄膜電晶體作為具光感測功能的光檢測薄膜電晶體,然而氧化鋅通道層能隙為3.3 eV,只能檢測紫外光波段,無法偵測可見光波段,所以我們在通道層及介電層間結合了金奈米粒,因金奈米粒子具有表面電漿共振之效應,藉由控制金奈米粒之尺寸大小,即可與可見光波段起反應,來達成延伸偵測可見光波段的目的。
本研究分別探討了薄膜電晶體結合金奈米粒子後,元件本身電特性上的改變,以及探討在紫外光與可見光波段下作為光感測器的偵測能力,最後將其結構轉製於高透光度的Fluorine tin oxide (FTO)玻璃基板上。本研究主要以元件的臨限電壓(Threshold voltage, Vth)漂移量的大小,來判斷其特性上的改變以及光偵測的能力;在元件本身電特性的改善上,結合高濃度金奈米粒,臨限電壓可漂移至-14 V,大大增加薄膜電晶體之工作區域;在可見光檢測靈敏度上,臨限電壓漂移量可達至6 V,且其施加的汲極電壓只需0.5 V;於FTO基板上的光電晶體元件,照光前後,臨限電壓漂移量也有0.8 V。
本研究希望提供一個利用低成本、無毒、常溫常壓下的製程,即可製造出可應用於透明玻璃基板上的光感測器,並應用於工業上與生活上的諸多電子元件之中。
In this thesis, we fabricated a non-toxic zinc oxide (ZnO) material as the semiconducting channel layer for thin-film transistor (TFT) by using simple and low-temperature processing method. The thin-film transistors can be operated at low voltage, and it can be a photo-detector for sensing the visible light.
The thin-film transistors exhibited good electrical switching characteristics which have very low leakage current in the non-working region, in contrast, they have relatively higher saturation drain current in the working region. In this study, we used the ZnO material as the channel layer, because it is not only non-toxic and abundant but also possesses highly transparent and excellent electrical characteristics. Moreover, we can deposit the ZnO channel layer by spin-coating processing which can be carried out at the room temperature and atmosphere.
We made the photo-transistors with ZnO channel layer only sensing the UV light band and not detecting the visible band, so we linked the gold nanoparticles (AuNPs) between the channel and dielectric layer. The AuNPs can react with visible light through the surface plasmon resonance (SPR) effect. Consequently, the TFTs with AuNPs can be the photo-detector for sensing UV and visible light.
In this work, we investigated the electrical performance before and after linking AuNPs. And then investigated the ability of photo-detecting of the phototransistors with AuNPs under the various conditions of illumination. Finally, fabricated the phototransistors on fluorine tin oxide (FTO) glass substrate, and found there is still the photosensing ability.
In this work, the electrical characteristics of threshold voltage (Vth) shift represent the improvement of electrical performance and the ability of photo-sensing. The Vth could shift to -14 V when the TFT with more AuNPs. In the photo-sensing, the ZnO-based TFT with AuNPs Vth shift was 6 V after being illuminated. And the operation voltage of drain voltage was only 0.5 V. Finally, the device was fabricated on the FTO glass substrate, the Vth shift could be 0.8 V after being illuminated.
We hope to utilize low-cost, non-toxic process which can be carried out at the room temperature and atmosphere and fabricate the photodetector on FTO glass substrate. The devices on FTO glass substrate can be applied in various electronic products for industry and life.
Abstract in Chinese i
Abstract in English ii
Acknowledgements iv
Contents v
List of Tables vii
List of Figures ix
Chapter 1: Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Thesis Organization 6
Chapter 2: Literature Review 8
2.1 Thin-Film Transistors (TFTs) 8
2.1.1 Operation Mechanism 9
2.1.2 Parameters of Thin-Film Transistor 10
2.2 Channel Layer Material - Zinc Oxide (ZnO) 12
2.2.1 Overview of Channel Materials 12
2.2.2 Fundamentals of Zinc Oxide (ZnO) 13
2.3 Metallic Nanoparticles - Gold Nanoparticles (AuNPs) 15
2.3.1 Overview of Metallic Nanoparticles 15
2.3.2 Gold nanoparticles (AuNPs) 17
2.4 Self-assembly Linking Techniques 22
2.4.1 Overview of Linking Techniques 22
2.5 Fluorine-Doped Tin Oxide (FTO) glass substrate 24
Chapter 3: The Performances of the ZnO-based Thin-Film Transistor with AuNPs 26
3.1 Device Preparation 26
3.1.1 The synthesizing of the ZnO Solution 26
3.1.2 The Fabrication of the AuNPs Solution 26
3.1.3 The Process of linking the AuNPs to the device 28
3.1.4 The Process of the ZnO-based Thin-Film Transistor with AuNPs 28
3.2 Results and Discussion 30
3.2.1 The Absorption of the AuNPs solution 30
3.2.2 The Electrical Characteristics and Physical Analysis of the ZnO-based TFT with and without AuNPs 32
3.2.3 The Working Mechanism of the ZnO-based TFT with AuNPs 43
3.3 Summary 45
Chapter 4: The Photodetecting of the ZnO-based Thin-Film Transistor with AuNPs 46
4.1 The Effect of Electrical Field and Illumination to the Channel Layer 46
4.2 The Electrical Characteristics of the ZnO-based TFT with AuNPs under the illumination 50
4.2.1 The Electrical Characteristics of the ZnO-based TFT with AuNPs by Using Different Linkers 50
4.2.2 The Electrical Characteristics of the ZnO-based TFT with Different Concentrations of AuNPs Solutions 54
4.2.3 The Electrical Characteristics of the ZnO-based TFT with AuNPs under Visible Light and Ultraviolet Light 65
4.2.4 The Electrical Characteristics of the ZnO-based TFT with AuNPs under Visible Light with various intensities 67
4.3 The Working Mechanism of the ZnO-based TFT with AuNPs under the illumination 70
4.4 Summary 76
Chapter 5 The Combination of the ZnO-based Thin-Film Transistor with AuNPs and FTO Glass Substrate 77
5.1 Device Preparation 77
5.2 Results and Discussion 78
5.3 Summary 84
Chapter 6 Conclusion 85
Chapter 7 Future Work 87
References 88
(1) The Libelium website.Libelium Smart World http://www.libelium.com/resources/top_50_iot_sensor_applications_ranking/#show_infographic.
(2) 顧馨文.全球感測器市場分析與台灣產業發展動態; 2012.
(3) LEDinside.Photoplethysmography Technology Gains Wider Adoption in Wearable Device Market and Sets to Expand Into Home Healthcare Application, Says TrendForce http://technews.co/2016/05/21/photoplethysmography-technology-gains-wider-adoption-in-wearable-device-market-and-sets-to-expand-into-home-healthcare-application-says-trendforce/.
(4) Yun, M. G.; Kim, Y. K.; Ahn, C. H.; Cho, S. W.; Kang, W. J.; Cho, H. K.; Kim, Y.-H.Sci. Rep. 2016, 6 (1), 31991.
(5) Liu, F. J.; Hu, Z. F.; Sun, J.; Li, Z. J.; Huang, H. Q.; Zhao, J. W.; Zhang, X. Q.; Wang, Y. S.Solid. State. Electron. 2012, 68, 90–92.
(6) Tran, C.; Devices, A.; Rako, P.; December, F. G.EDN Mag. 2011, 7–8.
(7) Liu, K.; Sakurai, M.; Aono, M.Sensors 2010, 10 (9), 8604–8634.
(8) Mridha, S.; Basak, D.J. Appl. Phys. 2007, 101 (8).
(9) Pal, T.; Arif, M.; Khondaker, S. I.Nanotechnology 2010, 21 (32), 325201.
(10) Weng, W. Y.; Chang, S. J.; Hsu, C. L.; Hsueh, T. J.ACS Appl. Mater. Interfaces 2011, 3 (2), 162–166.
(11) Fortunato, E.; Barquinha, P.; Martins, R.Adv. Mater. 2012, 24 (22), 2945–2986.
(12) Thomas, S. R.; Pattanasattayavong, P.; Anthopoulos, T. D.Chem. Soc. Rev. 2013, 42 (16), 6910–6923.
(13) Branquinho, R.; Salgueiro, D.; Santos, L.; Barquinha, P.; Pereira, L.; Martins, R.; Fortunato, E.ACS Appl. Mater. Interfaces 2014, 6 (22), 19592–19599.
(14) Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.; Kang, D.; Kim, C. J.; Lim, H.; Song, I.; Park, Y.Thin Solid Films 2008, 516 (7), 1544–1548.
(15) Newman, C. R.; Frisbie, C. D.; DaSilva Filho, D. A.; Brédas, J. L.; Ewbank, P. C.; Mann, K. R.Chem. Mater. 2004, 16 (23), 4436–4451.
(16) Seo, J. S.; Bae, B. S.ACS Appl. Mater. Interfaces 2014, 6 (17), 15335–15343.
(17) Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y.2012.
(18) Jin, Z.; Gao, L.; Zhou, Q.; Wang, J.Sci. Rep. 2014, 4, 4268.
(19) Yang, D.; Zhang, L.; Wang, H.; Wang, Y.; Li, Z.; Song, T.; Fu, C.; Yang, S.; Zou, B.IEEE Photonics Technol. Lett. 2015, 27 (3), 233–236.
(20) Qi, Z.; Cao, J.; Li, H.; Ding, L.; Wang, J.Adv. Funct. Mater. 2015, 25 (21), 3138–3146.
(21) Liu, X.; Wang, J.; Liao, C.; Xiao, X.; Guo, S.; Jiang, C.; Fan, Z.; Wang, T.; Chen, X.; Lu, W.; Hu, W.; Liao, L.Adv. Mater. 2014, 26 (43), 7399–7404.
(22) Han, L.; Song, K.; Mandlik, P.; Wagner, S.Appl. Phys. Lett. 2010, 96 (4), 10–13.
(23) Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H.Nature 2004, 432 (7016), 488–492.
(24) Ahn, C. H.; Kang, W. J.; Kim, Y. K.; Yun, M. G.; Cho, H. K.ACS Appl. Mater. Interfaces 2016, 8 (24), 15518–15523.
(25) Ljubic, D.; Smithson, C. S.; Wu, Y.; Zhu, S.Adv. Electron. Mater. 2015, 1 (8), 1–9.
(26) Pillai, P. B.; DeSouza, M. M.Tech. Dig. - Int. Electron Devices Meet. IEDM 2016, 2016–Febru, 28.1.1-28.1.4.
(27) Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X.Nat. Commun. 2013, 4, 2292.
(28) Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doan, S.; Avrutin, V.; Cho, S.; Morkoç, H.; Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Do, S.; Avrutin, V.2005, 41301.
(29) Kolodziejczak-Radzimska, A.; Jesionowski, T.Materials (Basel). 2014, 7 (4), 2833–2881.
(30) Anderson, J.; Chris, G. V. de W.Reports Prog. Phys. 2009, 72 (12), 126501.
(31) Tanskanen, J. T.; Bakke, J. R.; Pakkanen, T. a.; Bent, S. F.J. Vac. Sci. Technol. A 2011, 29 (3), 31507.
(32) Kopalko, K.; Wójcik, A.; Godlewski, M.; Łusakowska, E.; Paszkowicz, W.; Domagała, J. Z.; Godlewski, M. M.; Szezerbakow, A.; Świa̧tek, K.; Dybko, K.Phys. Status Solidi C Conf. 2005, 2 (3), 1125–1130.
(33) Kajikawa, Y.J. Cryst. Growth 2006, 289 (1), 387–394.
(34) Garcia, M. A.J. Phys. D. Appl. Phys. 2011, 44, 283001.
(35) Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S.J. Chem. Phys. 2002, 116 (15), 6755–6759.
(36) Maier, S. A.; Atwater, H. A.J. Appl. Phys. 2005, 98 (1), 1–10.
(37) Atwater, H. A.; Polman, A.Nat. Mater. 2010, 9 (10), 865–865.
(38) Cheng, C.-H.Optical Properties of 2-Benzylthiol, 5-benzyl, 3-butylfuran Interacting with Gold Nanoparticles and Dynamic of Electronically Excited States of Ni3, Co3, and Cr3 Metal Complexes Studied by Femtosecond Transient Absorption Spectroscopy, Nation Tsing Hua University, 2008.
(39) Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G.V; Li, X.; Marquez, M.; Xia, Y.Chem. Soc. Rev. 2006, 35 (11), 1084–1094.
(40) Eustis, S.; el-Sayed, M. a.Chem. Soc. Rev. 2006, 35 (3), 209–217.
(41) Choi, Y.; Zhu, J.; Grunes, J.; Bokor, J.; Somorjai, G. a.J. Phys. Chem. B 2003, 107 (100), 3340–3343.
(42) Wu, Y.; Yang, P.J. Am. Chem. Soc. 2001, 123 (13), 3165–3166.
(43) Sharma, V. K.; Siskova, K. M.; Zboril, R.; Gardea-Torresdey, J. L.Adv. Colloid Interface Sci. 2014, 204, 15–34.
(44) Liau, S. Y.; Read, D. C.; Pugh, W. J.; Furr, J. R.; Russell, a D.Lett. Appl. Microbiol. 1997, 25 (1994), 279–283.
(45) Morones, J. R.; Elechiguerra, J. L.Nanotechnology 2005, 16 (10), 2346–2353.
(46) Li, N.; Zhao, P.; Astruc, D.Angew. Chemie - Int. Ed. 2014, 53 (7), 1756–1789.
(47) Ramamurthy, C. H.; Padma, M.; mariya samadanam, I. D.; Mareeswaran, R.; Suyavaran, A.; Kumar, M. S.; Premkumar, K.; Thirunavukkarasu, C.Colloids Surfaces B Biointerfaces 2013, 102, 808–815.
(48) Link, S.; Link, S.; El-Sayed, M. a.; El-Sayed, M.J. Phys. Chem. B 1999, 103 (40), 8410–8426.
(49) Grabar, K. C.; Freeman, R. G.; Natan, M. J.; GrWith Freeman, R.; Hommer, M. B.; Natan, M. J.Anal. Chem. Anal. Chem. J. A Adv. Spectrosc. 1995, 67 (4), 1217–1225.
(50) Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G.2015, 79 (October), 4215–4221.
(51) Mittal, A. K.; Chisti, Y.; Banerjee, U. C.Biotechnol. Adv. 2013, 31 (2), 346–356.
(52) In, S.; Hirst, Dj. G.; O’Sullivan, J. M.Br. J. Radiol. 2012, 85 (1010), 101–113.
(53) Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P.Adv. Mater. 2013, 25 (45), 6477–6512.
(54) Boccaccini, a R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.J. R. Soc. Interface 2010, 7 Suppl 5 (May), S581–S613.
(55) Nie, Z.; Petukhova, A.; Kumacheva, E.Nat. Nanotechnol. 2010, 5 (1), 15–25.
(56) Howarter, J. A.; Youngblood, J. P.Langmuir 2006, 22 (26), 11142–11147.
(57) Kambayashi, M.; Zhang, J.; Oyama, M.Cryst. Growth Des. 2005, 5 (1), 81–84.
(58) SIGMA-ALDRICH.3-Triethoxysilylpropylamine, APTES http://www.sigmaaldrich.com/catalog/product/aldrich/440140?lang=en®ion=TW.
(59) SIGMA-ALDRICH.(3-Mercaptopropyl)trimethoxysilane http://www.sigmaaldrich.com/catalog/product/aldrich/175617?lang=en®ion=TW.
(60) Madaria, A. R.; Kumar, A.; Zhou, C.Nanotechnology 2011, 22 (24), 245201.
(61) O’Connor, B.; Haughn, C.; An, K. H.; Pipe, K. P.; Shtein, M.Appl. Phys. Lett. 2008, 93 (22), 2006–2009.
(62) Chen, Z.; Li, W.; Li, R.; Zhang, Y.; Xu, G.; Cheng, H.; Conductive, T.; Thin, O.; Li, S. Q.; Chang, R. P. H.; Ocola, L. E.; Minami, T.SPIE Nanosci. + Eng. 2013, 29 (4), 13836–13842.
(63) Edwards, P. P.; Porch, A.; Jones, M. O.; Morgan, D. V.; Perks, R. M.Dalton Trans. 2004, No. 19, 2995–3002.
(64) Fukano, T.; Motohiro, T.Sol. Energy Mater. Sol. Cells 2004, 82 (4), 567–575.
(65) Cowlishaw, M. F.Proceeding Soc. Inf. Disp. 1985, 26 (2), 101–107.
(66) Huang, T. H.; Pei, Z.Jpn. J. Appl. Phys. 2009, 48 (4 PART 2), 1–4.
(67) Salido, E. M.; Servalli, L. N.; Gomez, J. C.; Verrastro, C.Vision Res. 2017, 131, 75–81.
(68) Shokri Kojori, H.; Yun, J. H.; Paik, Y.; Kim, J.; Anderson, W. A.; Kim, S. J.Nano Lett. 2016, 16 (1), 250–254.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊