|
1.Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor Devices Based on Graphene Materials, The Journal of Physical Chemistry C 113 (2009) 13103–13107. 2.Z. Li, J. Wang, S. Liu, X. Liu, S. Yang, Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors. Journal of Power Sources 196 (2011) 8160–8165. 3.Q. Tang, L. Wang, X. Qin, Study on the Capacitance Performance of Graphene, Integrated Ferroelectrics. 136 (2012) 127–131. 4.Zhang, X.; Manohar, S. K. Bulk Synthesis of Polypyrrole Nanofibers by a Seeding Approach. J. Am. Chem. Soc. 2004, 126, 12714−12715. 5.Huang, J.; Quan, B.; Liu, M.; Wei, Z.; Jiang, L., Conducting Polypyrrole Conical Nanocontainers: Formation Mechanism and Voltage Switchable Property. Macromol. Rapid Commun. 2008, 29, 1335−1340. 6.Chunsheng Du and Ning Pan., High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. 2006. 7.R. B. Rakhi , Wei Chen , Dongkyu Cha and H. N. Alshareef, High performance supercapacitors using metal oxideanchored graphene nanosheet electrodes. J. Mater. Chem., 2011, 21, 16197-16204. 8.Sh-Shen Cheong臺灣大學材料科學與工程學研究所學位論文, 2017, 1-236. 9.Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999). 10.Barry. R. MacDougall, Brian Conway Remembered, The Electrochemical Society Interface. 2014. 11.Girum Tiruye, Unidad de. Supercapacitors to Empower the Future. Instituto iMdea energia, 2014. 12.V. Subramanian, H. Zhu and B. Wei, Electrochemistry Communications, 2006, 8, 827-832. 13.Liu, Z., The Use of Ultracapacitors in Hybrid Vehicles. Master’s Thesis, University of California-Davis, Transportation Technology and Policy Program, August 2014. 14.Burke, A.F., Zhao, H., and Van Gelder, E., Simulated Performance of Alternative Hybrid-Electric Powertrains in Vehicles on Various Driving Cycles. EVS- 24, Stavanger, Norway, May 2009. 15.Burke, A. and Miller, M., Lithium batteries and ultracapacitors alone and in combination in hybrid vehicles: Fuel economy and battery stress reduction advantages. paper presented at the Electric Vehicle Symposium 25, Shenzhen, China, November 2010. 16.E. Bossanyi, Z. Saad-Saoud, and N. Jenkins, Prediction of flicker produced by wind turbines. Wind Energy, vol. 1, no. 1, pp. 35–51, 1998. 17.J. H. R. Enslin, J. Knijp, C. P. J. Jansen, and P. Bauer, Integrated approach to network stability and wind energy technology for on-shore and offshore applications. Proc. Power Quality, May 2003, pp. 185–192. 18.A. Nishino and K. Naoi, Technologies and Materials for Large Supercapacitors. CMC International, 2010. 19.A. Fahad, T. Soyata, Tai Wang, G. Sharma, W. Heizelman, Kai Shen, SOLARCAP: Supercapacitor Buffering of Solar Energy for Selfsustainable Field Systems. IEEE SOC conference (SOCC), Niagara Fals, NY, USA, pp.236-241, Sept 2012. 20.Meng C., Liu C., Chen L., Hu C. & Fan S, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010). 21.Dacheng Zhang, Xiong Zhang, Yao Chen, Changhui Wang, Yanwei Ma, Huanli Dong, Lang Jiang, Qing Mengb and Wenping Hu, Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene. Phys. Chem. Chem. Phys., 2012, 14, 10899–10903. 22.Miller, J. M., Dunn, B., Tran, T. D. & Pekala, R. W., Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309–L311 (1997). 23.超級電池的美麗與哀愁, 車聯社, 2016. 24.Tadai, K., & Mitani, T., Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater.Chem. 2005, 15-4914. 25.超級電容(EDLC)技術指南連載(一):村田超級電容的原理與構造,村田公司. 26.P. Simon and Y. Gogotsi, Nature materials, 2008, 7, 845-854. 27.Wikipedia of supercapacitor. 28.Wikipedia of electric double layer capacitor. 29.Qu, D. & Shi, H., Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998). 30.Shi, H., Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633–1639 (1995). 31.C. Ashtiani, R. Wright and G. Hunt, Journal of Power Sources, 2006, 154, 561-566. 32.J. M. Boyea, R. E. Camacho, S. P. Turano and W. J. Ready, Nanotechnol. Law Bus. 4, 585 (2007). 33.Veronica Augustyn, Patrice Simon, Bruce Dunn, Pseudocapacitive Oxide Materials for High-rate Electrochemical Energy Storage, Energy Environ. Sci. 7 (5) (2014) 1597-1614. 34.色譜世界, 循環伏安法概述. 35.儀器分析, 4.4.3循環伏安法(1). 36.D. K. Gosser, Jr, Cyclic Voltammetry Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, New York, (1993). 37.Shao Y, El-Kady M F, Lin C-W, Zhu G, Marsh K L, Hwang J Y, Zhang Q, Li Y, Wang H and Kaner R B, 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater, 2016, 28, 6719–26. 38.Tao Y et al, Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep, 2013, 3, 2975. 39.E. Tee, I. Tallo, T. Thomberg, A. Jänes, and E. Lust, Supercapacitors Based on Activated Silicon Carbide-Derived Carbon Materials and Ionic Liquid. J. Electrochem. Soc. 2016 163(7): A1317-A1325. 40.V. Subramanian, H. Zhu and B. Wei, Electrochemistry Communications, 2006, 8, 827-832. 41.Wang, J., Yang, Y., & Huang, Z. (2012). . Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. Journal of Power Sources, 204-236. 42.P. Kurzweil, M. Chwisetek, Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. Journal of Power Sources, 176 (2008), p. 555. 43.V. P. Kazantsev, Russ. Phys. J. 27, 709 (1984). 44.A. Chu and P. Braatz, J., Power Sources, 112, 236 (2002). 45.C. Brett, M. O. Brett, A. M. C. M. Brett and A. M. O. Brett, Electrochemistry: principles, methods, and applications, 1993. 46.C. Brett, M. O. Brett, A. M. C. M. Brett and A. M. O. Brett, Electrochemistry: principles, methods, and applications, 1993. 47.S. Srinivasan, E. Ticianelli, C. Derouin and A. Redondo, Journal of Power Sources, 1988, 22, 359-375. 48.Wikipedia of Pyrrole. 49.Wikipedia of polypyrrole. 50.百度百科, polypyrrole. 51.Li Yong Fang, Studies on conductive polypyrrole. China Academic Journal Electronic Publishing House, 1995. 52.Edgar Jimenez‐Cervantes Amieva, Juventino López‐Barroso, Ana Laura Martínez‐Hernández and Carlos Velasco‐Santos, Graphene‐Based Materials Functionalization with Natural Polymeric Biomolecules. Recent Advances in Graphene Research, chapter12, 2016. 53.ULRICH DAHMEN, ROLF ERNI, VELIMIR RADMILOVIC, CHRISTIAN KISIELOWSKI, MARTA-DACIL ROSSELL and PETER DENES, Background, status and future of the Transmission Electron Aberration-corrected Microscope project. Phil. Trans. R. Soc. A (2009) 367, 3795–3808. 54.X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo and J. Zhang, Acs Nano, 2012, 6, 6592-6599. 55.B. Z. Jang and A. Zhamu, Journal of Materials Science, 2008, 43, 5092-5101. 56.Wikipedia of carbon nanotube. 57.Dresselhaus M.S, Dresselhaus G, Eklund P.C., Science of Fullerenes and Carbon Nanotubes. Academic, New York/San Diego; 1996. 58.Antonio Ferreira Ávila, Guilherme Silveira Rachid Lacerda, Molecular Mechanics Applied to Single-Walled Carbon Nanotubes. Materials Research, Vol. 11, No. 3, 325-333, 2008. 59.Saito R, Dresselhaus G, Dresselhaus MS. J. 1993. p. 494. COI number [1:CAS:528:DyaK3sXhtV2qtLc%3D]; Bibcode number [1993JAP....73..494S]. 60.Ting-Chun Wang臺灣大學材料科學與工程學研究所學位論文, 2016, 1-162. 61.N.I. Zaabaa, K.L. Fooa, U. Hashima,d, S.J.Tanb,c, Wei-Wen Liua, C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering 184 ( 2017 ) 469 – 477. 62.Jullieth Suarez, Omar Ayyad, Pedro Gomez-Romero, Copper polypyrrole nanocables, Nanoscale Research Letters 2012, 7:521. 63.Chaohe Xu, Jing Sun and Lian Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J. Mater. Chem., 2011, 21, 11253-11258. 64.Muthulakshmi, B., D. Kalpana, S. Pitchumani, and N. G. Renganathan, Electrochemical deposition of polypyrrole for symmetric supercapacitors. J. Power Sources, 2006, 158:1533–1537. 65.Fan, L.-Z., and J. Maier. 2006. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8:937–940. 66.Hsu, H. C., C. H. Wang, S. K. Nataraj, H. C. Huang, H. Y. Du, S. T. Chang, et al. 2012. Stand-up structure of graphene-like carbon nanowalls on CNT directly grown on polyacrylonitrile-based carbon fiber paper as supercapacitor. Diam. Relat. Mater. 25:176–179. 67.Li, S.-M., Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang, H.-W. Tien, et al. 2013. Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors. J. Power Sources 225:347–355. 68.Yu, G., L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, et al. 2011. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11:4438–4442. 69. Horng, Y.-Y., Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, and K.-H. Chen. 2010. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J. Power Sources 195:4418–4422. 70.Chen, L. C., C. Y. Wen, C. H. Liang, W. K. Hong, K. J. Chen, H. C. Cheng, et al. 2002. Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition. Adv. Funct. Mater. 12:687–692. 71.Zhang, J., P. Chen, B. H. L. Oh, and M. B. Chan-Park. 2013. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Nanoscale 5:9860–9866. 72.Basnayaka, P. A., M. K. Ram, E. K. Stefanakos, and A. Kumar. 2013. Supercapacitors based on graphene–polyaniline derivative nanocomposite electrode materials. Electrochim. Acta 92:376–382. 73.Sivakkumar, S. R., W. J. Kim, J.-A. Choi, D. R. MacFarlane, M. Forsyth, and D.-W. Kim. 2007. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources 171:1062–1068. 74.Gupta, V., and N. Miura. 2006. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J. Power Sources 157:616–620. 75.Zhou, C., S. Kumar, C. D. Doyle, and J. M. Tour. 2005. Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chem. Mater. 17:1997–2002. 76.An, K. H., K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee. 2002. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149: A1058–A1062. 77. Li, P., Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, et al. 2014. Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl. Mater. Interfaces 6:5228–5234. 78.Hsu, Y.-K., Y.-C. Chen, Y.-G. Lin, L.-C. Chen, and K.-H. Chen. 2013. Direct-growth of poly(3,4-ethylenedioxythiophene) nanowires/carbon cloth as hierarchical supercapacitor electrode in neutral aqueous solution. J. Power Sources 242:718–724. 79.Toupin, M.; Brousse, T.; Belanger, D., Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials 2004, 16(16), 3184-3190. 80.Nandy, S .; Maiti, U. N.; Ghosh, C. K.; Chattopadhyay, K. K., Ehanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by. Journal of Physics: Condensed Matter 2009, 21(11), 115804. 81.Hu, C.-C.; Chen, K.-H., How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors. Journal of The Electrochemical Society 2004, 151(2), A281-A290. 82.Zang, J., S.-J. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, et al. 2008. Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J. Phys. Chem. C 112:14843–14847. 83.Wang, C., Y. Zhan, L. Wu, Y. Li, and J. Liu. 2014. High-voltage and high-rate symmetric supercapacitor based on MnO2 -polypyrrole hybrid nanofilm. Nanotechnology 25:305401. 84.Jiang, Y., P. Wang, X. Zang, Y. Yang, A. Kozinda, and L. Lin. 2013. Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as pseudocapacitor electrodes for enhanced energy storage. Nano Lett. 13:3524–3530.
|