跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃則毓
研究生(外文):Tse-Yu Huang
論文名稱:金屬氧化物/奈米碳材/聚吡咯奈米複材電極之製備與應用於高效能可撓式超級電容
論文名稱(外文):Fabrication and applications of metal oxide/nano-carbon material/polypyrrole nanocomposite electrodes for high-performance flexible supercapacitor
指導教授:林金福林金福引用關係
口試委員:廖文彬羅世強
口試日期:2017-11-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:235
中文關鍵詞:可撓式超級電容電化學聚合聚吡咯石墨烯氧化奈米碳管氧化釕氧化錳氧化鎳膠態電解質
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超級電容因為具有功率密度高、循環壽命長與對環境友善之優點,使其能夠運用於通訊、醫療與工業中。而可撓式超級電容具有更加之便利性,故其有很大之潛能應用於新一代之穿戴式電子產品。本研究之目的即為製作出具有高比電容值、高能量密度、高功率密度與長循環壽命之超級電容元件。
本研究分別以碳纖維與碳布為電極基材,以電化學聚合方法,調控不同材料組成與聚合時間,製作出聚吡咯一元系統電極、石墨烯/聚吡咯與氧化奈米碳管/聚吡咯之二元系統電極、石墨烯/氧化奈米碳管/聚吡咯之三元系統電極與金屬氧化物(氧化釕、氧化錳、氧化鎳)/石墨烯/氧化奈米碳管/聚吡咯之四元系統電極。並以傅立葉轉換紅外線光譜儀與掃描式電子顯微鏡進行電極材料分子間之相互作用力鑑定與表面形貌分析,以X射線微量分析儀觀察四元系統電極之元素分布。電極之電化學性質表現由恆電流充放電法與循環伏安法進行分析。以碳布為基材系統中,於聚合時間300秒下,氧化釕/石墨烯/氧化奈米碳管/聚吡咯之四元系統電極於電流密度1A/g下有最佳之比電容值1017.1F/g,且於20A/g下具有70.8%之電容保持率;於掃描速率5mV/s下有最佳之比電容值1034.1F/g,且於100mV/s下具有70.1%之電容保持率。
本研究亦利用氧化石墨烯/1-乙基-3-甲基咪唑啉双(三氟甲基磺酰基)亞胺離之膠態電解質與不同材料之電極封裝成可撓式對稱式之超級電容元件,並以恆電流充放電法、循環伏安法、電化學交流阻抗法與充放電循環法來分析元件之電化學性質。氧化釕/石墨烯/氧化奈米碳管/聚吡咯、氧化錳/石墨烯/氧化奈米碳管/聚吡咯、氧化鎳/石墨烯/氧化奈米碳管/聚吡咯、石墨烯/氧化奈米碳管/聚吡咯與聚吡咯元件於1A/g下之最高比電容值分別為561.6F/g、517.1F/g、475.9F/g、370F/g與322.9F/g,其於20A/g下之電容保持率分別為44.3%、43.5%、44.5%、56%與41%;於5mV/s下之比電容值分別為589.5F/g、535F/g、489.8F/g、384.2F/g與335F/g,其於100mV/s下之電容保持率分別為44.1%、44.2%、44.1%、54.3%與44.2%。其中氧化釕/石墨烯/氧化奈米碳管/聚吡咯元件擁有最佳之比電容值,其能量密度可達38.11Wh/kg,且於1000次充放電循環後仍有89.5%之電容保持率,故其具有不錯之循環壽命。於應用方面,我們將四個氧化釕/石墨烯/氧化奈米碳管/聚吡咯元件串聯,能成功使紅色發光二極管發亮,證明此研究中之可撓式超級電容具有應用於新一代電子裝置之潛能。
Supercapacitors can be applied to communication and healthcare industries due to their high power density, long cycle life and friendly to environment. Because flexible supercapacitors have convenience to personal life, they have great potential to develop as a next-generation and wearable electronic gadget. Our purpose of research is to fabricate a supercapacitor device with high specific capacitance, high energy density, high power density and long cycle life.
In our research, electrode of polypyrrole(PPy), binary system electrode of graphene/PPy and oxidized carbon nanotube/PPy, ternary system electrode of graphene/oxidized carbon nanotube/PPy and quaternary system electrode of metal oxide(RuO2, MnO2 or NiO)/graphene/oxidized carbon nanotube/PPy were individualy prepared by electrochemical polymerization deposition on carbon fiber and carbon cloth respectively, and we adjusted parameters of different compositions of materials and polymerization time in this experiment. We also used Fourier transform infrared spectroscopy(FTIR) to investigate the interaction between materials, scanning electron microscopy(SEM) to investigate the surface morphology and energy dispersive X-ray microanalysis(EDX) to analyze the compositions of quaternary electrode. We used galvanic charge-discharge method and cyclic voltammetry to analyze the electrochemical properties of electrodes. For the system of carbon cloth substrate, the quaternary electrode of RuO2/graphene/oxidized carbon nanotube/PPy with polymerization time of 300s has the best specific capacitance of 1017.1F/g at current density 1A/g measured by galvanic charge-discharge method and has specific capacitance retention of 70.8% at 20A/g. It also has the best specific capacitance of 1034.1F/g at scan rate 5mV/s measured by cyclic voltammetry, and has specific capacitance retention of 70.1% at 100mV/s.
We further fabricated the flexible symmetric supercapacitor device(SSC) with above mentioned electrodes by using GO/EMITFSI as gel electrolyte and used galvanic charge-discharge, cyclic voltammetry and electrochemical impedance to analyze the electrochemical properties of devices. SSCs with symmetric electrodes of RuO2/graphene/oxidized carbon nanotube/PPy, MnO2/graphene/oxidized carbon nanotube/PPy, NiO2/graphene/oxidized carbon nanotube/PPy, graphene/oxidized carbon nanotube/PPy and PPy have the highest specific capacitance of 561.6F/g, 517.1F/g, 475.9F/g, 370F/g and 322.9F/g at current density 1A/g and have specific capacitance retention of 44.3%, 43.5%, 44.5%, 56% and 41% at 20A/g respectively. Their specific capacitances at scan rate of 5mV/s were 589.5F/g, 535F/g, 489.8F/g, 384.2F/g and 335F/g at scan rate 5mV/s with the specific capacitance retention of 44.1%, 44.2%, 44.1%, 54.3% and 44.2% at 100mV/s respectively. We found the device of RuO2/graphene/oxidized carbon nanotube/PPy has the best specific capacitance and energy density of 38.11Wh/kg and has specific capacitance retention of 89.5% after 1000 charge-discharge cycle. Finally, we use four devices of RuO2/graphene/oxidized carbon nanotube/PPy in series to light up a red LED to demonstrate our SSCs having great potential for next generation electronic gadgets.
致謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
圖目錄 XI
表目錄 XXXII
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究架構 3
第二章 文獻回顧 4
2.1超級電容之發展 4
2.2超級電容之特性與組成 6
2.3超級電容之分類 8
2.3.1電雙層電容 8
2.3.2贗電容 10
2.4超級電容之電化學檢測方法 11
2.4.1循環伏安法 12
2.4.2 恆電流充放電法 14
2.4.3 電化學交流阻抗法 16
2.5聚吡咯 18
2.6 奈米碳材 20
2.6.1 石墨烯 20
4.6.2 奈米碳管 21
第三章 實驗方法 22
3.1 實驗藥品與器材 22
3.2 實驗儀器與設備 24
3.3電極之製備 25
3.3.1 碳布之清洗 25
3.3.2 氧化奈米碳管之製備 25
3.3.3 Pyrrole單體水溶液之製備 26
3.3.4 含有奈米碳材與金屬氧化物之Pyrrole單體水溶液之製備 26
3.3.5電化學聚合之設定 27
3.4 可撓式對稱式超級電容元件之製備 32
3.4.1 氧化石墨烯之製備 32
3.4.2 GO/EMITFSI膠態電解質之製備 33
3.4.3 元件之組裝 34
3.5 FTIR樣品之製備 36
3.6 SEM樣品之製備 36
3.7 電化學分析之設定 37
3.7.1 三極式系統 37
3.7.2 二極式系統 37
第四章 結果與討論 38
4.1 PPy以碳纖維為基材之超級電容電極 38
4.1.1 PPy之FTIR分析 39
4.1.2 PPy於碳纖維上之表面型貌 42
4.1.3 PPy於碳纖維上之電容表現 50
4.1.4 PPy於碳纖維上之CV曲線 56
4.2奈米碳材/PPy以碳纖維為基材之超級電容電極 61
4.2.1石墨烯/PPy以碳纖維為基材之超級電容電極 62
4.2.1.1石墨烯/PPy之FTIR分析 62
4.2.1.2石墨烯/PPy於碳纖維上之表面形貌 63
4.2.1.3石墨烯/PPy於碳纖維上之電容表現 65
4.2.1.4石墨烯/PPy於碳纖維上之CV曲線 71
4.2.2氧化奈米碳管/PPy以碳纖維為基材之超級電容電極 77
4.2.2.1氧化奈米碳管/PPy之FTIR分析 77
4.2.2.2氧化奈米碳管/PPy於碳纖維上之表面形貌 78
4.2.2.3氧化奈米碳管/PPy於碳纖維上之電容表現 80
4.2.2.4氧化奈米碳管/PPy於碳纖維上之CV曲線 87
4.2.3石墨烯/氧化奈米碳管/PPy以碳纖維為基材之超級電容電極 93
4.2.3.1石墨烯/氧化奈米碳管/PPy於碳纖維上之FTIR 93
4.2.3.2石墨烯/氧化奈米碳管/PPy於碳纖維上之表面形貌 94
4.2.3.3石墨烯/氧化奈米碳管/PPy於碳纖維上之電容表現 96
4.2.3.4石墨烯/氧化奈米碳管/PPy於碳纖維上之CV曲線 109
4.3 PPy以碳布為基材之超級電容電極 121
4.3.1 PPy於碳布上之表面形貌 122
4.3.2 PPy於碳布上之電容表現 127
4.3.3 PPy於碳布上之CV曲線 132
4.4奈米碳材/PPy以碳布為基材之超級電容電極 137
4.4.1奈米碳材/PPy於碳布上之表面形貌 138
4.4.2奈米碳材/PPy於碳布上之電容表現 143
4.4.3奈米碳材/PPy於碳布上之CV曲線 149
4.5金屬氧化物/奈米碳材/PPy以碳布為基材之超級電容電極 155
4.5.1金屬氧化物/奈米碳材/PPy之FTIR分析 156
4.5.1.1 RuO2/奈米碳材/PPy之FTIR 156
4.5.1.2 MnO2/奈米碳材/PPy之FTIR 157
4.5.1.3 NiO/奈米碳材/PPy之FTIR 158
4.5.2金屬氧化物/奈米碳材/PPy於碳布上之表面形貌 159
4.5.3金屬氧化物/奈米碳材/PPy於碳布上之電容表現 166
4.5.4金屬氧化物/奈米碳材/PPy於碳布上之CV曲線 182
4.6可撓式對稱式超級電容元件之性能 197
4.6.1以GO/EMITFSI作為超級電容元件膠態電解質之性質分析 197
4.6.1.1膠化EMITFSI離子液體 198
4.6.1.2不同重量比之GO/EMITFSI作為超級電容元件膠態電解質之電容表現 199
4.6.1.3不同重量比之GO/EMITFSI作為超級電容元件膠態電解質之CV曲線 202
4.6.2 以6GO/EMITFSI電解質與不同材料電極製成超級電容元件之 性質分析 205
4.6.2.1 以6GO/EMITFSI電解質與不同材料電極製成超級電容元件之電容表現 206
4.6.2.2以6GO/EMITFSI電解質與不同材料電極組製成超級電容元件之CV曲線 209
4.6.2.3以6GO/EMITFSI電解質與不同材料電極製成超級電容元件之EIS分析 212
4.6.2.4以6GO/EMITFSI電解質與不同材料電極製成超級電容元件之Ragone plot 214
4.6.2.5可撓式對稱式超級電容元件之效能 215
4.7可撓式對稱式超級電容元件之長效性分析 216
4.7.1以6GO/EMITFSI電解質與不同材料電極製成超級電容元件於長效性分析後,電極之表面形貌 217
4.7.2以6GO/EMITFSI電解質與不同材料電極製成超級電容元件之長效性分析表現 223
第五章 結論 225
參考文獻 227
1.Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor
Devices Based on Graphene Materials, The Journal of Physical Chemistry C 113
(2009) 13103–13107.
2.Z. Li, J. Wang, S. Liu, X. Liu, S. Yang, Synthesis of hydrothermally reduced
graphene/MnO2 composites and their electrochemical properties as supercapacitors.
Journal of Power Sources 196 (2011) 8160–8165.
3.Q. Tang, L. Wang, X. Qin, Study on the Capacitance Performance of Graphene,
Integrated Ferroelectrics. 136 (2012) 127–131.
4.Zhang, X.; Manohar, S. K. Bulk Synthesis of Polypyrrole Nanofibers by a Seeding Approach. J. Am. Chem. Soc. 2004, 126, 12714−12715.
5.Huang, J.; Quan, B.; Liu, M.; Wei, Z.; Jiang, L., Conducting Polypyrrole Conical Nanocontainers: Formation Mechanism and Voltage Switchable Property. Macromol. Rapid Commun. 2008, 29, 1335−1340.
6.Chunsheng Du and Ning Pan., High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. 2006.
7.R. B. Rakhi , Wei Chen , Dongkyu Cha and H. N. Alshareef, High performance supercapacitors using metal oxideanchored graphene nanosheet electrodes. J. Mater. Chem., 2011, 21, 16197-16204.
8.Sh-Shen Cheong臺灣大學材料科學與工程學研究所學位論文, 2017, 1-236.
9.Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999).
10.Barry. R. MacDougall, Brian Conway Remembered, The Electrochemical Society Interface. 2014.
11.Girum Tiruye, Unidad de. Supercapacitors to Empower the Future. Instituto iMdea energia, 2014.
12.V. Subramanian, H. Zhu and B. Wei, Electrochemistry Communications, 2006, 8, 827-832.
13.Liu, Z., The Use of Ultracapacitors in Hybrid Vehicles. Master’s Thesis, University of California-Davis, Transportation Technology and Policy Program, August 2014.
14.Burke, A.F., Zhao, H., and Van Gelder, E., Simulated Performance of Alternative Hybrid-Electric Powertrains in Vehicles on Various Driving Cycles. EVS- 24, Stavanger, Norway, May 2009.
15.Burke, A. and Miller, M., Lithium batteries and ultracapacitors alone and in combination in hybrid vehicles: Fuel economy and battery stress reduction advantages. paper presented at the Electric Vehicle Symposium 25, Shenzhen, China, November 2010.
16.E. Bossanyi, Z. Saad-Saoud, and N. Jenkins, Prediction of flicker produced by wind turbines. Wind Energy, vol. 1, no. 1, pp. 35–51, 1998.
17.J. H. R. Enslin, J. Knijp, C. P. J. Jansen, and P. Bauer, Integrated approach to network stability and wind energy technology for on-shore and offshore applications. Proc. Power Quality, May 2003, pp. 185–192.
18.A. Nishino and K. Naoi, Technologies and Materials for Large Supercapacitors.
CMC International, 2010.
19.A. Fahad, T. Soyata, Tai Wang, G. Sharma, W. Heizelman, Kai Shen, SOLARCAP: Supercapacitor Buffering of Solar Energy for Selfsustainable Field Systems. IEEE SOC conference (SOCC), Niagara Fals, NY, USA, pp.236-241, Sept 2012.
20.Meng C., Liu C., Chen L., Hu C. & Fan S, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010).
21.Dacheng Zhang, Xiong Zhang, Yao Chen, Changhui Wang, Yanwei Ma, Huanli Dong, Lang Jiang, Qing Mengb and Wenping Hu, Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene. Phys. Chem. Chem. Phys., 2012, 14, 10899–10903.
22.Miller, J. M., Dunn, B., Tran, T. D. & Pekala, R. W., Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309–L311 (1997).
23.超級電池的美麗與哀愁, 車聯社, 2016.
24.Tadai, K., & Mitani, T., Highly dispersed ruthenium oxide nanoparticles on
carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater.Chem. 2005, 15-4914.
25.超級電容(EDLC)技術指南連載(一):村田超級電容的原理與構造,村田公司.
26.P. Simon and Y. Gogotsi, Nature materials, 2008, 7, 845-854.
27.Wikipedia of supercapacitor.
28.Wikipedia of electric double layer capacitor.
29.Qu, D. & Shi, H., Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998).
30.Shi, H., Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633–1639 (1995).
31.C. Ashtiani, R. Wright and G. Hunt, Journal of Power Sources, 2006, 154, 561-566.
32.J. M. Boyea, R. E. Camacho, S. P. Turano and W. J. Ready, Nanotechnol. Law Bus. 4, 585 (2007).
33.Veronica Augustyn, Patrice Simon, Bruce Dunn, Pseudocapacitive Oxide Materials for High-rate Electrochemical Energy Storage, Energy Environ. Sci. 7 (5) (2014) 1597-1614.
34.色譜世界, 循環伏安法概述.
35.儀器分析, 4.4.3循環伏安法(1).
36.D. K. Gosser, Jr, Cyclic Voltammetry Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, New York, (1993).
37.Shao Y, El-Kady M F, Lin C-W, Zhu G, Marsh K L, Hwang J Y, Zhang Q, Li Y, Wang H and Kaner R B, 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater, 2016, 28, 6719–26.
38.Tao Y et al, Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep, 2013, 3, 2975.
39.E. Tee, I. Tallo, T. Thomberg, A. Jänes, and E. Lust, Supercapacitors Based on Activated Silicon Carbide-Derived Carbon Materials and Ionic Liquid. J. Electrochem. Soc. 2016 163(7): A1317-A1325.
40.V. Subramanian, H. Zhu and B. Wei, Electrochemistry Communications, 2006, 8, 827-832.
41.Wang, J., Yang, Y., & Huang, Z. (2012). . Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. Journal of Power Sources, 204-236.
42.P. Kurzweil, M. Chwisetek, Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products.
Journal of Power Sources, 176 (2008), p. 555.
43.V. P. Kazantsev, Russ. Phys. J. 27, 709 (1984).
44.A. Chu and P. Braatz, J., Power Sources, 112, 236 (2002).
45.C. Brett, M. O. Brett, A. M. C. M. Brett and A. M. O. Brett, Electrochemistry: principles, methods, and applications, 1993.
46.C. Brett, M. O. Brett, A. M. C. M. Brett and A. M. O. Brett, Electrochemistry: principles, methods, and applications, 1993.
47.S. Srinivasan, E. Ticianelli, C. Derouin and A. Redondo, Journal of Power Sources, 1988, 22, 359-375.
48.Wikipedia of Pyrrole.
49.Wikipedia of polypyrrole.
50.百度百科, polypyrrole.
51.Li Yong Fang, Studies on conductive polypyrrole. China Academic Journal Electronic Publishing House, 1995.
52.Edgar Jimenez‐Cervantes Amieva, Juventino López‐Barroso, Ana Laura Martínez‐Hernández and Carlos Velasco‐Santos, Graphene‐Based Materials Functionalization with Natural Polymeric Biomolecules. Recent Advances in Graphene Research, chapter12, 2016.
53.ULRICH DAHMEN, ROLF ERNI, VELIMIR RADMILOVIC, CHRISTIAN KISIELOWSKI, MARTA-DACIL ROSSELL and PETER DENES, Background, status and future of the Transmission Electron Aberration-corrected Microscope project. Phil. Trans. R. Soc. A (2009) 367, 3795–3808.
54.X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo and J. Zhang, Acs Nano, 2012, 6, 6592-6599.
55.B. Z. Jang and A. Zhamu, Journal of Materials Science, 2008, 43, 5092-5101.
56.Wikipedia of carbon nanotube.
57.Dresselhaus M.S, Dresselhaus G, Eklund P.C., Science of Fullerenes and Carbon Nanotubes. Academic, New York/San Diego; 1996.
58.Antonio Ferreira Ávila, Guilherme Silveira Rachid Lacerda, Molecular Mechanics Applied to Single-Walled Carbon Nanotubes. Materials Research, Vol. 11, No. 3, 325-333, 2008.
59.Saito R, Dresselhaus G, Dresselhaus MS. J. 1993. p. 494. COI number [1:CAS:528:DyaK3sXhtV2qtLc%3D]; Bibcode number [1993JAP....73..494S].
60.Ting-Chun Wang臺灣大學材料科學與工程學研究所學位論文, 2016, 1-162.
61.N.I. Zaabaa, K.L. Fooa, U. Hashima,d, S.J.Tanb,c, Wei-Wen Liua, C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering 184 ( 2017 ) 469 – 477.
62.Jullieth Suarez, Omar Ayyad, Pedro Gomez-Romero, Copper polypyrrole nanocables, Nanoscale Research Letters 2012, 7:521.
63.Chaohe Xu, Jing Sun and Lian Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J. Mater. Chem., 2011, 21, 11253-11258.
64.Muthulakshmi, B., D. Kalpana, S. Pitchumani, and N. G. Renganathan, Electrochemical deposition of polypyrrole for symmetric supercapacitors. J. Power
Sources, 2006, 158:1533–1537.
65.Fan, L.-Z., and J. Maier. 2006. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8:937–940.
66.Hsu, H. C., C. H. Wang, S. K. Nataraj, H. C. Huang, H. Y. Du, S. T. Chang, et al. 2012. Stand-up structure of graphene-like carbon nanowalls on CNT directly grown
on polyacrylonitrile-based carbon fiber paper as supercapacitor. Diam. Relat. Mater. 25:176–179.
67.Li, S.-M., Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang, H.-W. Tien, et al. 2013. Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors. J. Power Sources 225:347–355.
68.Yu, G., L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, et al. 2011. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11:4438–4442.
69. Horng, Y.-Y., Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, and K.-H. Chen. 2010. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both
high gravimetric and area-normalized capacitance. J. Power Sources 195:4418–4422.
70.Chen, L. C., C. Y. Wen, C. H. Liang, W. K. Hong, K. J. Chen, H. C. Cheng, et al. 2002. Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition. Adv. Funct. Mater. 12:687–692.
71.Zhang, J., P. Chen, B. H. L. Oh, and M. B. Chan-Park. 2013. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane
based on in situ reduction of graphene oxide and self-assembly. Nanoscale 5:9860–9866.
72.Basnayaka, P. A., M. K. Ram, E. K. Stefanakos, and A. Kumar. 2013.
Supercapacitors based on graphene–polyaniline derivative nanocomposite electrode materials. Electrochim. Acta 92:376–382.
73.Sivakkumar, S. R., W. J. Kim, J.-A. Choi, D. R. MacFarlane, M. Forsyth, and D.-W. Kim. 2007. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources 171:1062–1068.
74.Gupta, V., and N. Miura. 2006. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J.
Power Sources 157:616–620.
75.Zhou, C., S. Kumar, C. D. Doyle, and J. M. Tour. 2005. Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes.
Chem. Mater. 17:1997–2002.
76.An, K. H., K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee. 2002. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149: A1058–A1062.
77. Li, P., Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, et al. 2014. Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl. Mater. Interfaces 6:5228–5234.
78.Hsu, Y.-K., Y.-C. Chen, Y.-G. Lin, L.-C. Chen, and K.-H. Chen. 2013. Direct-growth of poly(3,4-ethylenedioxythiophene) nanowires/carbon cloth as
hierarchical supercapacitor electrode in neutral aqueous solution. J. Power Sources 242:718–724.
79.Toupin, M.; Brousse, T.; Belanger, D., Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials 2004, 16(16), 3184-3190.
80.Nandy, S .; Maiti, U. N.; Ghosh, C. K.; Chattopadhyay, K. K., Ehanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by. Journal of Physics: Condensed Matter 2009, 21(11), 115804.
81.Hu, C.-C.; Chen, K.-H., How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors. Journal of The Electrochemical Society 2004, 151(2), A281-A290.
82.Zang, J., S.-J. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, et al. 2008. Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J. Phys. Chem. C 112:14843–14847.
83.Wang, C., Y. Zhan, L. Wu, Y. Li, and J. Liu. 2014. High-voltage and high-rate symmetric supercapacitor based on MnO2 -polypyrrole hybrid nanofilm.
Nanotechnology 25:305401.
84.Jiang, Y., P. Wang, X. Zang, Y. Yang, A. Kozinda, and L. Lin. 2013. Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as
pseudocapacitor electrodes for enhanced energy storage. Nano Lett. 13:3524–3530.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊