跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳海平
研究生(外文):Hai-Ping Wu
論文名稱:炸油飲食對SD雄性大鼠生殖系統發育影響
論文名稱(外文):Effect of oxidized frying oil-containing diet on development of male reproductive system in SD rats.
指導教授:趙蓓敏
指導教授(外文):Pei-Min Chao
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:112
中文關鍵詞:氧化炸油內分泌干擾物抗雄激素雄性生殖系統睪固酮
外文關鍵詞:oxidized frying oilendocrine disruptorsanti-androgensmale reproductive systemtestosterone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
油炸為常見且受歡迎的烹調法,但三酸甘油酯在高溫和含水及氧氣的環境下會發生許多化學反應,使原本非極性的三酸甘油酯產生帶有含氧官能基的極性化合物使油品變質,稱為氧化炸油。已知炸油中極性化合物類似xenobiotics或內分泌干擾物(endocrine disrupting chemicals, EDCs),皆會誘發peroxisome proliferator-activated receptor α (PPARα)及cytochrome P450酵素加速自我代謝。基於許多環境xenobiotics已知具有內分泌干擾效應,因此我們懷疑炸油可能也具有內分泌干擾作用。為探討炸油飲食對雄性生殖發育影響,本研究分為兩部分,第一部分使用C57BL/6J小鼠於母鼠懷孕期給予炸油極性化合物飲食,結果發現懷孕第17至19天正常出現的雄性胚胎睪固酮波峰消失,且第19天雄性胚胎肛殖距顯著降低的類雌化現象。實驗二使用SD雄性大鼠,從母親懷孕至出生後9週齡性成熟之期間持續給予炸油飲食,觀察炸油對於雄性子代的生殖系統發育之影響。結果發現與新鮮油相比,炸油飲食的雄性子代出生肛殖距較短、包皮分離時間較晚以及血清、睪丸睪固酮濃度較低,還有五個雄激素依賴性組織:腹側前列腺、儲精囊及凝結腺體、提肛肌及尿道球肌、龜頭、尿道球腺重量減輕等結果,而雖然附睪精子數及精子活動力沒有顯著變化,但炸油組的的精子活動力有降低傾向,此外睪丸組織切片發現有生精上皮退化、細胞間隙增大、出現空泡等現象。再進一步發現睪丸中睪固酮合成相關酵素17β-hydroxysteroid dehydrogenase (17β-HSD)以及速率限制酵素steroidogenic acute regulatory protein (StAR)、cholesterol side-chain cleavage enzyme (P450scc)還有負責膽固醇擷取的LDL-receptor之mRNA表現量皆下降,導致睪固酮合成原料-膽固醇的缺乏且直接抑制睪固酮合成而造成上述結果。結論為炸油飲食確實具有抗雄激素作用,會抑制睪丸膽固醇擷取及睪固酮的合成對雄性生殖系統發育有不利影響。
Deep frying is a common and popular cooking method, but triglycerides (TG) in cooking oil undergo many chemical reactions in environments with the presence of high temperature, water and oxygen, so that the oxidized frying oil contains the unaltered components called non-polar compounds and altered components called polar compounds which is characterized by the presence of oxygen-containing functional groups in TG monomer, dimer or polymer. Polar compounds are very similar to xenobiotics or endocrine disrupting chemicals (EDCs) as both can induce peroxisome proliferator-activated receptor alpha (PPARα) and cytochrome P450 enzymes to accelerate their own catabolism. Based on many xenobiotics are known to be EDCs, we suspect that frying oil may have endocrine disrupting effects. In order to investigate the effects of the frying oil on male reproductive development, we conducted two experiments in this study. In the first experiment, C57BL/6J dams were fed with diet containing polar compounds during pregnancy and killed at pregnancy d17, d18 and 19 to measure the testosterone concentration in the whole embryos of males. The testosterone surge normally present at day 18 disappeared in polar compound group. The anogenital distance (AGD) of embryos at day 19 shortened in polar compound group suggesting a feminizing effect occurred. In the second experiment, SD male rats were exposed to frying oil diet persistently from embryo to 9 weeks of age. The results showed that compared with control, frying oil-diet resulted in shortened AGD, delayed age of preputial separation, lowered serum concentration of testosterone, and reducted the androgen-dependent tissue weights, i.e. ventral prostate, seminal vesicles and coagulated glands, bulbourethral gland, levator ani and bulbocavernosus muscle as well as penis glans. Although the sperm count did not change significantly, the sperm motility tended to decrease in the oxidized frying oil group. In addition, histological study showed the abnormalities in seminiferous tubules of testis. The mRNA level of 17β-hydroxysteroid dehydrogenase (17β-HSD) and the rate-limiting enzyme of testosterone synthesis, steroidogenic acute regulatory protein (StAR) and P450scc, as well as LDL receptor were significantly reduced by frying oil-diet, indicating a lowered cholesterol uptake (precursor of testosterone) and testosterone synthesis in testis contributed to the anti-androgenic effects of frying oil. We concluded that dietary frying oil is unfavorable for male reproduction and a suppressed cholesterol uptake and testosterone synthesis may contribute to this effect.
謝誌 ................................ ................................ ................................ ................................ ... 1
摘要 ................................ ................................ ................................ ................................ ... 2
Abstract ................................ ................................ ................................ .............................. 3
目錄 ................................ ................................ ................................ ................................ ... 5
圖目錄 ................................ ................................ ................................ ............................... 7
表目錄 ................................ ................................ ................................ ............................... 8
縮寫表 ................................ ................................ ................................ ............................... 9
第一章 前言 ................................ ................................ ................................ ................... 12
第二章 文獻回顧 ................................ ................................ ................................ ........... 14
第一節 氧化炸油 ................................ ................................ ................................ ..... 14
一、 油脂化學 ................................ ................................ ................................ . 14
二、 炸油生理效應 ................................ ................................ ......................... 14
第二節 內分泌干擾物 (Endocrine disrupting chemicals EDCs) ........................... 16
一、 定義 ................................ ................................ ................................ ......... 16
二、 環境 EDCs ................................ ................................ ............................... 16
第三節 雄性生殖系統 ................................ ................................ ............................. 20
一、 雄性生殖系統發育 ................................ ................................ ................. 20
二、 雄性生殖系統功能 ................................ ................................ ................. 23
三、 精子的生成 – 精子發生作用 (Spermatogenesis) ............................... 28
四、 Spermatogenesis的調控 ................................ ................................ ......... 30
五、 睪固酮生合成 – 類固醇新生作用 (steroidogenesis) .......................... 32
第三章 材料與方法 ................................ ................................ ................................ ....... 42
第一節 氧化炸油製備及極性合物分離 ................................ ............................. 42
一、 氧化炸油製備 ................................ ................................ ......................... 42
二、 極性化合物分離 ................................ ................................ ..................... 42
三、 氧化指標測定 ................................ ................................ ......................... 44
第二節 動物實驗 ................................ ................................ ................................ ..... 47
一、 實驗設計 ................................ ................................ ................................ . 47
二、 飼料配方 ................................ ................................ ................................ . 51
三、 理學檢查 ................................ ................................ ................................ . 53
四、 胚胎性別鑑定 ................................ ................................ ......................... 55
五、 全胚睪固酮測定 ................................ ................................ ..................... 57
六、 血液生化分析 ................................ ................................ ......................... 58
七、 睪丸化學分析 ................................ ................................ ......................... 60
目錄
6
八、 睪丸 mRNA測定 ................................ ................................ .................... 62
九、 睪丸組織切片 ................................ ................................ ......................... 68
十、 西方墨點法 (western blot) ................................ ................................ ..... 69
十一、 統計分析 ................................ ................................ ............................. 75
第四章 結果 ................................ ................................ ................................ ................... 76
第一節 氧化炸油 ................................ ................................ ................................ ..... 76
一、 炸油回收率 ................................ ................................ ............................. 76
二、 PC百分比 ................................ ................................ ............................... 76
三、 TLC點片 ................................ ................................ ................................ . 76
四、 油脂氧化指標測定 ................................ ................................ ................. 76
第二節 動物實驗 ................................ ................................ ................................ ..... 79
一、 胚胎 AGD ................................ ................................ ................................ 79
二、 胚胎性別鑑定 ................................ ................................ ......................... 79
三、 雄性胚胎睪固酮含量 ................................ ................................ ............. 79
一、 雄性子代出生後體重變化 ................................ ................................ ..... 84
二、 包皮分離日齡 ................................ ................................ ......................... 84
三、 雄性子代 AGD ................................ ................................ ........................ 84
四、 尿道下裂及乳頭保留 ................................ ................................ ............. 84
五、 雄激素依賴性組織絕對重量 ................................ ................................ . 85
六、 其他器官絕對重量 、相................................ ............................. 85
七、 睪丸切片 ................................ ................................ ................................ . 86
八、 精子計數及活動力 ................................ ................................ ................. 86
九、 雄性子代血清睪固酮、膽醇濃度 ................................ ..................... 86
十、 睪丸固酮及膽醇含量 ................................ ................................ ..... 87
十一、 雄性子代睪丸 mRNA表現量 ................................ ............................ 87
十二、 雄性子代睪丸蛋白質表現量 ................................ ............................. 88
第五章 討論 ................................ ................................ ................................ ................. 104
一、 炸油的抗雄激素效應 ................................ ................................ ........... 104
二、 炸油抗雄激素的機制 ................................ ................................ ........... 106
第六章 參考文獻 ................................ ................................ ................................ ......... 110
1. Choe, E. and D.B. Min, Chemistry of deep-fat frying oils. J Food Sci, 2007. 72(5): p. R77-86.
2. Liu, J.-F. and C.-J. Huang, Tissue α-tocopherol retention in male rats is compromised by feeding diets containing oxidized frying oil. The Journal of nutrition, 1995. 125(12): p. 3071-3080.
3. Chao, P.M., M.F. Yang, Y.N. Tseng, K.M. Chang, K.S. Lu, and C.J. Huang, Peroxisome proliferation in liver of rats fed oxidized frying oil. Journal of Nutritional Science and Vitaminology, 2005. 51(5): p. 361-368.
4. Koch, A., B. König, J. Spielmann, A. Leitner, G.I. Stangl, and K. Eder, Thermally oxidized oil increases the expression of insulin-induced genes and inhibits activation of sterol regulatory element-binding protein-2 in rat liver. The Journal of nutrition, 2007. 137(9): p. 2018-2023.
5. Chao, P.M., H.L. Huang, C.H. Liao, S.T. Huang, and C.J. Huang, A high oxidised frying oil content diet is less adipogenic, but induces glucose intolerance in rodents. Br J Nutr, 2007. 98(1): p. 63-71.
6. Chiang, Y.F., H.M. Shaw, M.F. Yang, C.Y. Huang, C.H. Hsieh, and P.M. Chao, Dietary oxidised frying oil causes oxidative damage of pancreatic islets and impairment of insulin secretion, effects associated with vitamin E deficiency. Br J Nutr, 2011. 105(9): p. 1311-9.
7. Liu, J.-F. and C.-J. Huang, Dietary oxidized frying oil enhances tissue α-tocopherol depletion and radioisotope tracer excretion in vitamin E-deficient rats. The Journal of nutrition, 1996. 126(9): p. 2227-2235.
8. Huang, W.-C., Z.-C. Kang, Y.-J. Li, and H.-M. Shaw, Effects of oxidized frying oil on proteins related to α-tocopherol metabolism in rat liver. Journal of clinical biochemistry and nutrition, 2009. 45(1): p. 20-28.
9. Chao, P.-M. and Y.-S. Lin, Teratogenic effects of polar compounds in oxidized frying oil. Medical Research Archives; Vol 4 No 8 (2017): Vol. 4 Issue 8, December, 2016, 2016.
10. Kavlock, R.J., G.P. Daston, C. DeRosa, P. Fenner-Crisp, L.E. Gray, S. Kaattari, G. Lucier, M. Luster, M.J. Mac, C. Maczka, R. Miller, J. Moore, R. Rolland, G. Scott, D.M. Sheehan, T. Sinks, and H.A. Tilson, Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect, 1996. 104 Suppl 4: p. 715-40.
11. Diamanti-Kandarakis, E., J.P. Bourguignon, L.C. Giudice, R. Hauser, G.S. Prins, A.M. Soto, R.T. Zoeller, and A.C. Gore, Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev, 2009. 30(4): p. 293-342.
12. Heudorf, U., V. Mersch-Sundermann, and J. Angerer, Phthalates: toxicology and exposure. Int J Hyg Environ Health, 2007. 210(5): p. 623-34.
13. Borch, J., O. Ladefoged, U. Hass, and A.M. Vinggaard, Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reprod Toxicol, 2004. 18(1): p. 53-61.
14. Borch, J., S.B. Metzdorff, A.M. Vinggaard, L. Brokken, and M. Dalgaard, Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology, 2006. 223(1-2): p. 144-155.
15. Parks, L.G., J.S. Ostby, C.R. Lambright, B.D. Abbott, G.R. Klinefelter, N.J. Barlow, and L.E. Gray, The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicological Sciences, 2000. 58(2): p. 339-349.
16. Boberg, J., S. Christiansen, M. Axelstad, T.S. Kledal, A.M. Vinggaard, M. Dalgaard, C. Nellemann, and U. Hass, Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. Reprod Toxicol, 2011. 31(2): p. 200-9.
17. Wu, M.T., C.F. Wu, B.H. Chen, E.K. Chen, Y.L. Chen, J. Shiea, W.T. Lee, M.C. Chao, and J.R. Wu, Intake of phthalate-tainted foods alters thyroid functions in Taiwanese children. PLoS One, 2013. 8(1): p. e55005.
18. Huang, L.P., C.C. Lee, P.C. Hsu, and T.S. Shih, The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril, 2011. 96(1): p. 90-4.
19. Swan, S.H., K.M. Main, F. Liu, S.L. Stewart, R.L. Kruse, A.M. Calafat, C.S. Mao, J.B. Redmon, C.L. Ternand, and S. Sullivan, Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental health perspectives, 2005. 113(8): p. 1056.
20. Tsai, H.J., B.H. Chen, C.F. Wu, S.L. Wang, P.C. Huang, Y.C. Tsai, M.L. Chen, C.K. Ho, C.A. Hsiung, and M.T. Wu, Intake of phthalate-tainted foods and microalbuminuria in children: The 2011 Taiwan food scandal. Environ Int, 2016. 89-90: p. 129-37.
21. 黃柏菁 , 陳重羽 , 郭育良 , and 李俊璋 , 鄰苯二甲酸酯國人暴露及其健康 效應 . 台灣醫學 , 2010. 14(2): p. 169-180.
22. Staples, C.A., P.B. Dome, G.M. Klecka, S.T. Oblock, and L.R. Harris, A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 1998. 36(10): p. 2149-2173.
23. Biles, J., T. McNeal, and T. Begley, Determination of bisphenol A migrating from epoxy can coatings to infant formula liquid concentrates. Journal of Agricultural and Food Chemistry, 1997. 45(12): p. 4697-4700.
24. Kang, J.-H., F. Kondo, and Y. Katayama, Human exposure to bisphenol A. Toxicology, 2006. 226(2): p. 79-89.
25. Lorber, M., A. Schecter, O. Paepke, W. Shropshire, K. Christensen, and L. Birnbaum, Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environment International, 2015. 77: p. 55-62.
26. Krishnan, A.V., P. Stathis, S.F. Permuth, L. Tokes, and D. Feldman, Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 1993. 132(6): p. 2279-2286.
27. Howdeshell, K.L., A.K. Hotchkiss, K.A. Thayer, J.G. Vandenbergh, and F.S. Vom Saal, Environmental toxins: exposure to bisphenol A advances puberty. Nature, 1999. 401(6755): p. 763.
28. Chitra, K.C., C. Latchoumycandane, and P.P. Mathur, Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology, 2003. 185(1): p. 119-127.
29. Meeker, J.D., A.M. Calafat, and R. Hauser, Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol, 2010. 44(4): p. 1458-63.
30. Li, D., Z. Zhou, D. Qing, Y. He, T. Wu, M. Miao, J. Wang, X. Weng, J. Ferber,
and L. Herrinton, Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Human reproduction, 2009. 25(2): p. 519-527.
31. Li, D.-K., Z. Zhou, M. Miao, Y. He, J. Wang, J. Ferber, L.J. Herrinton, E. Gao, and W. Yuan, Urine bisphenol-A (BPA) level in relation to semen quality. Fertility and sterility, 2011. 95(2): p. 625-630. e4.
32. Takeuchi, T. and O. Tsutsumi, Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Biochemical and biophysical research communications, 2002. 291(1): p. 76-78.
33. Fletcher, R.J., Food sources of phyto-oestrogens and their precursors in Europe. Br J Nutr, 2003. 89 Suppl 1: p. S39-43.
34. Wang, T.T., N. Sathyamoorthy, and J.M. Phang, Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis, 1996. 17(2): p. 271-275.
35. Kuiper, G.G., J.G. Lemmen, B. Carlsson, J.C. Corton, S.H. Safe, P.T. Van Der Saag, B. Van Der Burg, and J.-A.k. Gustafsson, Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 1998. 139(10): p. 4252-4263.
36. Upmalis, D.H., R. Lobo, L. Bradley, M. Warren, F.L. Cone, and C.A. Lamia, Vasomotor symptom relief by soy isoflavone extract tablets in postmenopausal women: a multicenter, double-blind, randomized, placebo-controlled study. Menopause (New York, NY), 2000. 7(4): p. 236-242.
37. Nahas, E.A.P., J. Nahas-Neto, F.L. Orsatti, E.P. Carvalho, M.L.C.S. Oliveira, and R. Dias, Efficacy and safety of a soy isoflavone extract in postmenopausal women: A randomized, double-blind, and placebo-controlled study. Maturitas, 2007. 58(3): p. 249-258.
38. Zand, R.S.R., D.J. Jenkins, and E.P. Diamandis, Genistein: a potent natural antiandrogen. Clinical Chemistry, 2000. 46(6): p. 887-888.
39. Strauss, L., S. Mäkelä, S. Joshi, I. Huhtaniemi, and R. Santti, Genistein exerts estrogen-like effects in male mouse reproductive tract. Molecular and Cellular Endocrinology, 1998. 144(1): p. 83-93.
40. Chavarro, J.E., T.L. Toth, S.M. Sadio, and R. Hauser, Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic. Human reproduction, 2008. 23(11): p. 2584-2590.
41. Martinez, J. and J. Lewi, An unusual case of gynecomastia associated with soy product consumption. Endocrine Practice, 2008. 14(4): p. 415-418.
42. Setchell, K.D., L. Zimmer-Nechemias, J. Cai, and J.E. Heubi, Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am J Clin Nutr, 1998. 68(6 Suppl): p. 1453s-1461s.
43. Vandenplas, Y., P.G. Castrellon, R. Rivas, C.J. Gutierrez, L.D. Garcia, J.E. Jimenez, A. Anzo, B. Hegar, and P. Alarcon, Safety of soya-based infant formulas in children. Br J Nutr, 2014. 111(8): p. 1340-60.
44. Andres, A., M.B. Moore, L.E. Linam, P.H. Casey, M.A. Cleves, and T.M. Badger, Compared with Feeding Infants Breast Milk or Cow-Milk Formula, Soy Formula Feeding Does Not Affect Subsequent Reproductive Organ Size at 5 Years of Age, 2. The Journal of nutrition, 2015. 145(5): p. 871-875.
45. Saxén, L. and H. Sariola, Early organogenesis of the kidney. Pediatric nephrology, 1987. 1(3): p. 385-392.
46. Benton, L., L.X. Shan, and M.P. Hardy, Differentiation of adult Leydig cells. J Steroid Biochem Mol Biol, 1995. 53(1-6): p. 61-8.
47. Scheer, H. and B. Robaire, Steroid Δ4-5α-reductase and 3α-hydroxysteroid dehydrogenase in the rat epididymis during development. Endocrinology, 1980. 107(4): p. 948-953.
48. Setchell, B., Development of the function of the blood-testis barrier in rats and mice. Testicular development, structure, and function, 1980.
49. Vitale, R., D.W. Fawcett, and M. Dym, The normal development of the blood‐testis barrier and the effects of clomiphene and estrogen treatment. The Anatomical Record, 1973. 176(3): p. 333-344.
50. Robaire, B., B.T. Hinton, and M.-C. Orgebin-Crist, The epididymis, in Knobil and Neill''s Physiology of Reproduction (Third Edition). 2006, Elsevier. p. 1071-1148.
51. Podlasek, C.A., D.H. Barnett, J.Q. Clemens, P.M. Bak, and W. Bushman, Prostate Development Requires Sonic Hedgehog Expressed by the Urogenital Sinus Epithelium. Developmental Biology, 1999. 209(1): p. 28-39.
52. Marty, M.S., R.E. Chapin, L.G. Parks, and B.A. Thorsrud, Development and maturation of the male reproductive system. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2003. 68(2): p. 125-136.
53. Weisz, J. and I.L. Ward, Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology, 1980. 106(1): p. 306-316.
54. Ward, I.L., Prenatal stress feminizes and demasculinizes the behavior of males. Science, 1972. 175(4017): p. 82-4.
55. Ward, I.L., The prenatal stress syndrome: current status. Psychoneuroendocrinology, 1984. 9(1): p. 3-11.
56. McGivern, R.F., W.J. Raum, E. Salido, and E. Redei, Lack of prenatal testosterone surge in fetal rats exposed to alcohol: Alterations in testicular morphology and physiology. Alcoholism: Clinical and Experimental Research, 1988. 12(2): p. 243-247.
57. Parks, L.G., J.S. Ostby, C.R. Lambright, B.D. Abbott, G.R. Klinefelter, N.J. Barlow, and L.E. Gray Jr, The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicological sciences, 2000. 58(2): p. 339-349.
58. Korenchevsky, V., M. Dennison, and R. Schalit, The response of castrated male rats to the injection of testicular hormone. Biochemical Journal, 1932. 26(4): p. 1306.
59. Eisenberg, E. and G.S. Gordan, The levator ani muscle of the rat as an index of myotrophic activity of steroidal hormones. Journal of Pharmacology and Experimental Therapeutics, 1950. 99(1): p. 38-44.
60. EISENBERG, E., G.S. GORDAN, and H.W. ELLIOTT, Testosterone and tissue respiration of the castrate male rat with a possible test for myotrophic activity. Endocrinology, 1949. 45(2): p. 113-119.
61. Hershberger, L., E.G. Shipley, and R.K. Meyer, Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method. Proceedings of the Society for Experimental Biology and Medicine, 1953. 83(1): p. 175-180.
62. Hilgar, A. and E. Vollmer, Endocrine bioassay data: Androgenic and myogenic. Washington, DC: US Public Health Service, 1964.
63. Lacy, D., Certain aspects of testis structure and function. British medical bulletin, 1962. 18(3): p. 205-208.
64. Cosentino, M. and A. Cockett, Structure and function of the epididymis.
Urological research, 1986. 14(5): p. 229-240.
65. Brandt, H., T.S. Acott, D.J. Johnson, and D.D. Hoskins, Evidence for an epididymal origin of bovine sperm forward motility protein. Biology of reproduction, 1978. 19(4): p. 830-835.
66. Varesi, S., V. Vernocchi, M. Faustini, and G.C. Luvoni, Morphological and acrosomal changes of canine spermatozoa during epididymal transit. Acta Veterinaria Scandinavica, 2013. 55(1): p. 17.
67. Creasy, D.M. and R.E. Chapin, Chapter 59 - Male Reproductive System, in Haschek and Rousseaux''s Handbook of Toxicologic Pathology (Third Edition), W.M. Haschek, C.G. Rousseaux, and M.A. Wallig, Editors. 2013, Academic Press: Boston. p. 2493-2598.
68. Lilja, H., A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. The Journal of clinical investigation, 1985. 76(5): p. 1899-1903.
69. Ronquist, G. and I. Brody, The prostasome: its secretion and function in man. Biochimica et biophysica acta, 1985. 822(2): p. 203-218.
70. Huacuja, L., A. Sosa, N.M. Delgado, and A. Rosado, A kinetic study of the participation of zinc in human spermatozoa metabolism. Life sciences, 1973. 13(10): p. 1383-1394.
71. Hidiroglou, M. and J.E. Knipfel, Zinc in Mammalian Sperm: A Review1. Journal of Dairy Science, 1984. 67(6): p. 1147-1156.
72. Price, D., Normal development of the prostate and seminal vesicles of the rat with a study of experimental postnatal modifications. American Journal of Anatomy, 1936. 60(1): p. 79-127.
73. Isaacs, J.T., Antagonistic effect of androgen on prostatic cell death. The Prostate, 1984. 5(5): p. 545-557.
74. Gonzales, G.F., Function of seminal vesicles and their role on male fertility. Asian journal of Andrology, 2001. 3(4): p. 251-258.
75. Robert, M. and C. Gagnon, Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein. Cellular and Molecular Life Sciences CMLS, 1999. 55(6-7): p. 944-960.
76. Tauber, P., D. Propping, G. Schumacher, and L. Zaneveld, Biochemical aspects of the coagulation and liquefaction of human semen. Journal of Andrology, 1980. 1(6): p. 281-288.
77. Mandal, A. and A.K. Bhattacharyya, Differences in osmolality, pH, buffering capacity, superoxide dismutase and maintenance of sperm motility in human ejaculates according to the degree of coagulation. Int J Androl, 1988. 11(1): p. 45-51.
78. Comhaire, F., L. Vermeulen, K. Ghedira, J. Mas, S. Irvine, and G. Callipolitis, Adenosine triphosphate in human semen: a quantitative estimate of fertilizing potential. Fertil Steril, 1983. 40(4): p. 500-4.
79. Okamura, N., Y. Tajima, H. Ishikawa, S. Yoshii, K. Koiso, and Y. Sugita, Lowered levels of bicarbonate in seminal plasma cause the poor sperm motility in human infertile patients. Fertility and sterility, 1986. 45(2): p. 265-272.
80. Okamura, N., Y. Tajima, A. Soejima, H. Masuda, and Y. Sugita, Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. Journal of Biological Chemistry, 1985. 260(17): p. 9699-9705.
81. Fabiani, R., L. Johansson, Ö. Lundkvist, and G. Ronquist, Prolongation and
improvement of prostasome promotive effect on sperm forward motility. European Journal of Obstetrics & Gynecology and Reproductive Biology, 1995. 58(2): p. 191-198.
82. Gottlieb, C., K. Svanborg, P. Eneroth, and M. Bygdeman, Effect of prostaglandins on human sperm function in vitro and seminal adenosine triphosphate content. Fertility and sterility, 1988. 49(2): p. 322-327.
83. Gonzales, G.F., M. Garcia-Hjarles, G. Velazquez, and J. Coyotupa, Seminal prolactin and its relationship to sperm motility in men. Fertility and sterility, 1989. 51(3): p. 498-503.
84. Velázquez‐Ramírez, A., C. Vilar‐Rojas, and J. Hicks, Similar effects of prolactin and dbcAMP upon human spermatozoa metabolism. International journal of andrology, 1980. 3(1‐6): p. 23-31.
85. Harvey, C., Relation between the volume and fructose content of human semen. Nature, 1948. 162(4125): p. 812.
86. Cukierski, M.A., J.L. Sina, S. Prahalada, and R.T. Robertson, Effects of seminal vesicle and coagulating gland ablation on fertility in rats. Reprod Toxicol, 1991. 5(4): p. 347-52.
87. Pang, S.F., P.H. Chow, and T.M. Wong, The role of the seminal vesicles, coagulating glands and prostate glands on the fertility and fecundity of mice. J Reprod Fertil, 1979. 56(1): p. 129-32.
88. Gonzales, G., Test for androgen activity at the male reproductive tract in infertile men. Archives of andrology, 1994. 32(3): p. 235-242.
89. Higgins, S.J. and J.M. Burchell, Effects of testosterone on messenger ribonucleic acid and protein synthesis in rat seminal vesicle. Biochemical Journal, 1978. 174(2): p. 543-551.
90. Killick, S.R., C. Leary, J. Trussell, and K.A. Guthrie, Sperm content of pre-ejaculatory fluid. Hum Fertil (Camb), 2011. 14(1): p. 48-52.
91. Chughtai, B., A. Sawas, R.L. O''malley, R.R. Naik, S. Ali Khan, and S. Pentyala, A neglected gland: a review of Cowper''s gland. International journal of andrology, 2005. 28(2): p. 74-77.
92. Holmes, G.M. and B.D. Sachs, Physiology and mechanics of rat levator ani muscle: evidence for a sexual function. Physiology & behavior, 1994. 55(2): p. 255-266.
93. Gillespie, J. and J. Maxwell, Adrenergic innervation of sphincteric and nonsphincteric smooth muscle in the rat intestine. Journal of Histochemistry & Cytochemistry, 1971. 19(11): p. 676-681.
94. Gillespie, J.S. and R. Lüllmann-Rauch, On the ultrastructure of the rat anococcygeus muscle. Cell and tissue research, 1974. 149(1): p. 91-104.
95. Elisková, M., Morphological study of M. anococcygeus in male and female rats. Anatomischer Anzeiger, 1989. 168(2): p. 181-187.
96. Wespes, E., M. Nogueira, A.-G. Herbaut, M. Caufriez, and C. Schulman, Role of the bulbocavernosus muscles on the mechanism of human erection. European urology, 1990. 18: p. 45-48.
97. Newman, H.F. and J.D. Northup, Mechanism of human penile erection: an overview. Urology, 1981. 17(5): p. 399-408.
98. Jocelyn, H.D. and B.P. Setchell, Regnier de Graaf on the human reproductive organs. An annotated translation of Tractatus de Virorum Organis Generationi Inservientibus (1668) and De Mulierub Organis Generationi Inservientibus Tractatus Novus (1962). 1972.
99. Johansen, J.A., S.M. Breedlove, and C.L. Jordan, Androgen receptor
expression in the levator ani muscle of male mice. J Neuroendocrinol, 2007. 19(10): p. 823-6.
100. Tobin, C. and Y. Joubert, Testosterone-induced development of the rat levator ani muscle. Developmental Biology, 1991. 146(1): p. 131-138.
101. Rand, M.N. and S.M. Breedlove, Androgen locally regulates rat bulbocavernosus and levator ani size. Journal of neurobiology, 1992. 23(1): p. 17-30.
102. Ward, I.L. and J. Weisz, Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology, 1984. 114(5): p. 1635-44.
103. Ward, I.L. and J. Weisz, Maternal stress alters plasma testosterone in fetal males. Science, 1980. 207(4428): p. 328-9.
104. Rhees, R.W., B.A. Kirk, S. Sephton, and E.D. Lephart, Effects of prenatal testosterone on sexual behavior, reproductive morphology and LH secretion in the female rat. Dev Neurosci, 1997. 19(5): p. 430-7.
105. Christiansen, S., M. Axelstad, J. Boberg, A.M. Vinggaard, G.A. Pedersen, and U. Hass, Low dose effects of BPA on early sexual development of male and female rats. Reproduction, 2013: p. REP-13-0377.
106. Gray, L.E., J. Ostby, J. Furr, M. Price, D.N.R. Veeramachaneni, and L. Parks, Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicological Sciences, 2000. 58(2): p. 350-365.
107. Durlej, M., I. Kopera, K. Knapczyk-Stwora, A. Hejmej, M. Duda, M. Koziorowski, M. Slomczynska, and B. Bilinska, Connexin 43 gene expression in male and female gonads of porcine offspring following in utero exposure to an anti-androgen, flutamide. Acta Histochemica, 2011. 113(1): p. 6-12.
108. Gallavan, R.H., J.F. Holson, D.G. Stump, J.F. Knapp, and V.L. Reynolds, Interpreting the toxicologic significance of alterations in anogenital distance: potential for confounding effects of progeny body weights. Reproductive Toxicology, 1999. 13(5): p. 383-390.
109. Yoshimura, S., H. Yamaguchi, K. Konno, N. Ohsawa, S. Noguchi, and A. Chisaka, Observation of preputial separation is a useful tool for evaluating endocrine active chemicals. Journal of toxicologic pathology, 2005. 18(3): p. 141-157.
110. Korenbrot, C., I. Huhtaniemi, and R. Weiner, Preputial separation as an external sign of pubertal development in the male rat. Biology of reproduction, 1977. 17(2): p. 298-303.
111. LYONS, W.R., I. BERLIN, and S. Friedlander, Cornification of balano-preputial epithelium in normal rats and in castrated rats treated with testosterone propionate. Endocrinology, 1942. 31(6): p. 659-663.
112. Tan, B.L.L., N.M. Kassim, and M.A. Mohd, Assessment of pubertal development in juvenile male rats after sub-acute exposure to bisphenol A and nonylphenol. Toxicology Letters, 2003. 143(3): p. 261-270.
113. Foster, P., E. Mylchreest, K. Gaido, and M. Sar, Effects of phthalate esters on the developing reproductive tract of male rats. Apmis, 2001. 109(S103): p. S272-S277.
114. Jan, S.Z., G. Hamer, S. Repping, D.G. de Rooij, A.M. van Pelt, and T.L. Vormer, Molecular control of rodent spermatogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2012. 1822(12): p. 1838-1850.
115. Woop, M., R.D. Schwab, J.H. Lee, and A.R. Carter, Optimizing Tethered Particle Motion to Measure DNA Compaction by Protamine. Biophysical Journal, 2015. 108(2): p. 393a.
116. Kierszenbaum, A.L., E. Rivkin, and L.L. Tres, Acroplaxome, an F-actin–keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Molecular biology of the cell, 2003. 14(11): p. 4628-4640.
117. Kierszenbaum, A.L. and L.L. Tres, The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Archives of histology and cytology, 2004. 67(4): p. 271-284.
118. Russell, L.D., R.A. Ettlin, A.P.S. Hikim, and E.D. Clegg, Histological and histopathological evaluation of the testis. International journal of andrology, 1993. 16(1): p. 83-83.
119. O''Donnell, L., P.K. Nicholls, M.K. O’Bryan, R.I. McLachlan, and P.G. Stanton, Spermiation: the process of sperm release. Spermatogenesis, 2011. 1(1): p. 14-35.
120. Barrett, K.E., S.M. Barman, S. Boitano, and H. Brooks, Ganong’s review of medical physiology. 23. NY: McGraw-Hill Medical, 2009.
121. Hagenäs, L., E. Ritzen, L. Plöen, V. Hansson, F. French, and S. Nayfeh, Sertoli cell origin of testicular androgen-binding protein (ABP). Molecular and cellular endocrinology, 1975. 2(5): p. 339-350.
122. Galardo, M.N., A. Gorga, J.P. Merlo, M. Regueira, E.H. Pellizzari, S.B. Cigorraga, M.F. Riera, and S.B. Meroni, Participation of HIFs in the regulation of Sertoli cell lactate production. Biochimie, 2017. 132: p. 9-18.
123. Buzek, S.W. and B.M. Sanborn, Increase in testicular androgen receptor during sexual maturation in the rat. Biol Reprod, 1988. 39(1): p. 39-49.
124. Su, L., D.D. Mruk, W.M. Lee, and C.Y. Cheng, Differential effects of testosterone and TGF-beta3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier. Exp Cell Res, 2010. 316(17): p. 2945-60.
125. Yan, H.H., D.D. Mruk, W.M. Lee, and C.Y. Cheng, Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. Faseb j, 2008. 22(6): p. 1945-59.
126. Yeh, S., M.Y. Tsai, Q. Xu, X.M. Mu, H. Lardy, K.E. Huang, H. Lin, S.D. Yeh, S. Altuwaijri, X. Zhou, L. Xing, B.F. Boyce, M.C. Hung, S. Zhang, L. Gan, and C. Chang, Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13498-503.
127. O''Donnell, L., R.I. McLachlan, N.G. Wreford, D.M. de Kretser, and D.M. Robertson, Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biol Reprod, 1996. 55(4): p. 895-901.
128. Holdcraft, R.W. and R.E. Braun, Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development, 2004. 131(2): p. 459-67.
129. Ramaswamy, S., T.M. Plant, and G.R. Marshall, Pulsatile stimulation with recombinant single chain human luteinizing hormone elicits precocious Sertoli cell proliferation in the juvenile male rhesus monkey (Macaca mulatta). Biology of reproduction, 2000. 63(1): p. 82-88.
130. Jutte, N.H., R. Jansen, J. Grootegoed, F. Rommerts, and H. Van der Molen,
FSH stimulation of the production of pyruvate and lactate by rat Sertoli cells may be involved in hormonal regulation of spermatogenesis. Journal of Reproduction and Fertility, 1983. 68(1): p. 219-226.
131. Sharpe, R., Follicle-stimulating hormone and spermatogenesis in the adult male. Journal of Endocrinology, 1989. 121(3): p. 405-407.
132. Tapanainen, J.S., K. Aittomäki, J. Min, T. Vaskivuo, and I.T. Huhtaniemi, Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nature genetics, 1997. 15(2): p. 205.
133. Dierich, A., M.R. Sairam, L. Monaco, G.M. Fimia, A. Gansmuller, M. LeMeur, and P. Sassone-Corsi, Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proceedings of the National Academy of Sciences, 1998. 95(23): p. 13612-13617.
134. Nieschlag, E., M. Simoni, J. Gromoll, and G. Weinbauer, Role of FSH in the regulation of spermatogenesis: clinical aspects. Clinical endocrinology, 1999. 51(2): p. 139-146.
135. Fevold, H.R., M.C. Lorence, J.L. McCarthy, J.M. Trant, M. Kagimoto, M.R. Waterman, and J.I. Mason, Rat P45017α from testis: characterization of a full-length cDNA encoding a unique steroid hydroxylase capable of catalyzing both Δ4-and Δ5-steroid-17, 20-lyase reactions. Molecular Endocrinology, 1989. 3(6): p. 968-975.
136. Miller, W.L. and R.J. Auchus, The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev, 2011. 32(1): p. 81-151.
137. Andersen, J.M. and J.M. Dietschy, Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat. Journal of Biological Chemistry, 1978. 253(24): p. 9024-9032.
138. Gwynne, J.T. and J.F. Strauss III, The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocrine reviews, 1982. 3(3): p. 299-329.
139. Azhar, S. and E. Reaven, Regulation of Leydig cell cholesterol metabolism, in The Leydig Cell in Health and Disease. 2007, Springer. p. 135-148.
140. Reaven, E., L. Zhan, A. Nomoto, S. Leers-Sucheta, and S. Azhar, Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis. Journal of lipid research, 2000. 41(3): p. 343-356.
141. WAYNE HOU, J., D.C. COLLINS, and R.L. SCHLEICHER, Sources of cholesterol for testosterone biosynthesis in murine Leydig cells. Endocrinology, 1990. 127(5): p. 2047-2055.
142. Horton, J.D., J.L. Goldstein, and M.S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation, 2002. 109(9): p. 1125-1131.
143. Srere, P.A., I. CKATKOFF, S. TRETTMAN, and L. Burstein, The extrahepatic synthesis of cholesterol. Journal of Biological Chemistry, 1950. 182: p. 629-634.
144. Buhaescu, I. and H. Izzedine, Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem, 2007. 40(9-10): p. 575-84.
145. Goldstein, J.L. and M.S. Brown, Regulation of the mevalonate pathway.
Nature, 1990. 343(6257): p. 425.
146. Clark, B.J., J. Wells, S.R. King, and D.M. Stocco, The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). Journal of Biological Chemistry, 1994. 269(45): p. 28314-28322.
147. Sugawara, T., J.A. Holt, D. Driscoll, J.F. Strauss, D. Lin, W.L. Miller, D. Patterson, K.P. Clancy, I.M. Hart, and B.J. Clark, Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11. 2 and a pseudogene to chromosome 13. Proceedings of the National Academy of Sciences, 1995. 92(11): p. 4778-4782.
148. Watari, H., F. Arakane, C. Moog-Lutz, C.B. Kallen, C. Tomasetto, G.L. Gerton, M.-C. Rio, M.E. Baker, and J.F. Strauss, MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proceedings of the National Academy of Sciences, 1997. 94(16): p. 8462-8467.
149. Charman, M., B.E. Kennedy, N. Osborne, and B. Karten, MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. Journal of lipid research, 2010. 51(5): p. 1023-1034.
150. Stone, D. and O. Hechter, Studies on ACTH action in perfused bovine adrenals: aspects of progesterone as an intermediary in corticosteroidogenesis. Archives of biochemistry and biophysics, 1955. 54(1): p. 121-128.
151. Halkerston, I., J. Eichhorn, and O. Hechter, A requirement for reduced triphosphopyridine nucleotide for cholesterol side-chain cleavage by mitochondrial fractions of bovine adrenal cortex. Journal of Biological Chemistry, 1961. 236(2): p. 374-380.
152. Koritz, S.B. and A.M. Kumar, On the Mechanism of Action of the Adrenocorticotrophic Hormone THE STIMULATION OF THE ACTIVITY OF ENZYMES INVOLVED IN PREGNENOLONE SYNTHESIS. Journal of Biological Chemistry, 1970. 245(1): p. 152-159.
153. Guryev, O., R. Carvalho, S. Usanov, A. Gilep, and R. Estabrook, A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proceedings of the National Academy of Sciences, 2003. 100(25): p. 14754-14759.
154. Hu, M.-C., N.-C. Hsu, N.B. El Hadj, C.-I. Pai, H.-P. Chu, C.-K.L. Wang, and B.-c. Chung, Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Molecular endocrinology, 2002. 16(8): p. 1943-1950.
155. Tajima, T., K. Fujieda, N. Kouda, J. Nakae, and W.L. Miller, Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46, XY sex reversal and adrenal insufficiency. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(8): p. 3820-3825.
156. Kim, C.J., L. Lin, N. Huang, C.A. Quigley, T.W. AvRuskin, J.C. Achermann, and W.L. Miller, Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. The Journal of Clinical Endocrinology & Metabolism, 2008. 93(3): p. 696-702.
157. Parker, K.L. and B.P. Schimmer, Steroidogenic factor 1: a key determinant of endocrine development and function. Endocrine reviews, 1997. 18(3): p. 361-377.
158. Morohashi, K.-i., Gonadal and extragonadal functions of Ad4BP/SF-1: developmental aspects. Trends in Endocrinology & Metabolism, 1999. 10(5): p. 169-173.
159. Pelletier, G., S. Li, Y. Tremblay, A. Belanger, and F. Labrie, Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450 (scc), 3 beta-hydroxysteroid dehydrogenase and cytochrome P450 (c17)) in rat adrenal cortex and gonads. Journal of endocrinology, 2001. 171(2): p. 373-383.
160. Thomas, J.L., R.P. Myers, and R.C. Strickler, Human placental 3β-hydroxy-5-ene-steroid dehydrogenase and steroid 5→ 4-ene-isomerase: purification from mitochondria and kinetic profiles, biophysical characterization of the purified mitochondrial and microsomal enzymes. Journal of steroid biochemistry, 1989. 33(2): p. 209-217.
161. Lachance, Y., C. Labrie, J. Simard, M. Dumont, Y. De Launoit, S. Guérin, G. Leblanc, and F. Labrie, Characterization of human 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase gene and its expression in mammalian cells. Journal of Biological Chemistry, 1990. 265(33): p. 20469-20475.
162. Lorence, M.C., B.A. MURRY, J.M. TRANT, and J.I. MASON, Human 3β-hydroxysteroid dehydrogenase/Δ5→ 4isomerase from placenta: Expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology, 1990. 126(5): p. 2493-2498.
163. Lee, T.C., W.L. Miller, and R.J. Auchus, Medroxyprogesterone acetate and dexamethasone are competitive inhibitors of different human steroidogenic enzymes. The Journal of Clinical Endocrinology & Metabolism, 1999. 84(6): p. 2104-2110.
164. Kandeel, F.R., Male reproductive dysfunction: pathophysiology and treatment. 2007: CRC Press.
165. Lorence, M.C., C.J. Corbin, N. Kamimura, M.S. Mahendroo, and J.I. Mason, Structural Analysis of the Gene Encoding Human 3β-Hydroxysteroid Dehydrogenase/δ5→ 4-lsomerase. Molecular Endocrinology, 1990. 4(12): p. 1850-1855.
166. Simard, J., M.-L. Ricketts, S. Gingras, P. Soucy, F.A. Feltus, and M.H. Melner, Molecular biology of the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family. Endocrine reviews, 2005. 26(4): p. 525-582.
167. Auchus, R.J., T.C. Lee, and W.L. Miller, Cytochrome b 5 augments the 17, 20-lyase activity of human P450c17 without direct electron transfer. Journal of Biological Chemistry, 1998. 273(6): p. 3158-3165.
168. Lee-Robichaud, P., J.N. Wright, M.E. Akhtar, and M. Akhtar, Modulation of the activity of human 17 α-hydroxylase-17, 20-lyase (CYP17) by cytochrome b5: endocrinological and mechanistic implications. Biochemical Journal, 1995. 308(3): p. 901-908.
169. Peltoketo, H., J. Simard, and J. Adamski, 17beta-hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes. Journal of Molecular Endocrinology, 1999. 23(1): p. 1-11.
170. Flück, C.E., W.L. Miller, and R.J. Auchus, The 17, 20-lyase activity of cytochrome P450c17 from human fetal testis favors the Δ5 steroidogenic pathway. The Journal of Clinical Endocrinology & Metabolism, 2003. 88(8): p. 3762-3766.
171. Zhang, Y., D. Poirier, and F. Labrie, Characteristics of human types 1, 2 and 3 17β-hydroxysteroid dehydrogenase activities: oxidation/reduction and inhibition. The Journal of steroid biochemistry and molecular biology, 1995. 55(5-6): p. 581-587.
172. Tremblay, Y., G. Ringler, Y. Morel, T. Mohandas, F. Labrie, J.F.r. Strauss, and W. Miller, Regulation of the gene for estrogenic 17-ketosteroid reductase lying on chromosome 17cen----q25. Journal of Biological Chemistry, 1989. 264(34): p. 20458-20462.
173. Kuhl, H., Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric, 2005. 8(sup1): p. 3-63.
174. Takeyama, J., H. Sasano, T. Suzuki, K. Iinuma, H. Nagura, and S. Andersson, 17β-Hydroxysteroid dehydrogenase types 1 and 2 in human placenta: an immunohistochemical study with correlation to placental development. The Journal of Clinical Endocrinology & Metabolism, 1998. 83(10): p. 3710-3715.
175. Simpson, E.R., M.S. Mahendroo, G.D. Means, M.W. Kilgore, M.M. Hinshelwood, S. Graham-Lorence, B. Amarneh, Y. Ito, C.R. Fisher, and M.D. Michael, Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine reviews, 1994. 15(3): p. 342-355.
176. Conte, F.A., M.M. Grumbach, Y. Ito, C.R. Fisher, and E.R. Simpson, A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). The Journal of Clinical Endocrinology & Metabolism, 1994. 78(6): p. 1287-1292.
177. Bruchovsky, N. and J.D. Wilson, The intranuclear binding of testosterone and 5α-androstan-17β-ol-3-one by rat prostate. Journal of Biological Chemistry, 1968. 243(22): p. 5953-5960.
178. Jenkins, E., S. Andersson, J. Imperato-McGinley, J. Wilson, and D. Russell, Genetic and pharmacological evidence for more than one human steroid 5 alpha-reductase. The Journal of clinical investigation, 1992. 89(1): p. 293-300.
179. Morohashi, K., S. Honda, Y. Inomata, H. Handa, and T. Omura, A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. Journal of Biological Chemistry, 1992. 267(25): p. 17913-17919.
180. Honda, S.-i., K.-i. Morohashi, M. Nomura, H. Takeya, M. Kitajima, and T. Omura, Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. Journal of Biological Chemistry, 1993. 268(10): p. 7494-7502.
181. Rice, D.A., A.R. Mouw, A.M. Bogerd, and K.L. Parker, A shared promoter element regulates the expression of three steridogenic enzymes. Molecular endocrinology, 1991. 5(10): p. 1552-1561.
182. Hammer, G.D. and H.A. Ingraham, Steroidogenic factor-1: its role in endocrine organ development and differentiation. Front Neuroendocrinol, 1999. 20(3): p. 199-223.
183. Pfeifer, S.M., E.E. Furth, T. Ohba, Y.J. Chang, H. Rennert, N. Sakuragi, J.T. Billheimer, and J.F. Strauss III, Sterol carrier protein 2: a role in steroid hormone synthesis? The Journal of steroid biochemistry and molecular biology, 1993. 47(1-6): p. 167-172.
184. MASCARÓ, C., A. NADAL, F.G. HEGARDT, P.F. MARRERO, and H. Diego, Contribution of steroidogenic factor 1 to the regulation of cholesterol synthesis. Biochemical Journal, 2000. 350(3): p. 785-790.
185. Ingraham, H.A., D.S. Lala, Y. Ikeda, X. Luo, W.-H. Shen, M.W. Nachtigal, R. Abbud, J.H. Nilson, and K.L. Parker, The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes & development, 1994. 8(19): p. 2302-2312.
186. Stocco, D.M., X. Wang, Y. Jo, and P.R. Manna, Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Molecular endocrinology, 2005. 19(11): p. 2647-2659.
187. Manna, P.R. and D.M. Stocco, Regulation of the steroidogenic acute regulatory protein expression: functional and physiological consequences. Curr Drug Targets Immune Endocr Metabol Disord, 2005. 5(1): p. 93-108.
188. Sugawara, T., M. Kiriakidou, J.M. McAllister, C.B. Kallen, and J.F. Strauss, 3rd, Multiple steroidogenic factor 1 binding elements in the human steroidogenic acute regulatory protein gene 5''-flanking region are required for maximal promoter activity and cyclic AMP responsiveness. Biochemistry, 1997. 36(23): p. 7249-55.
189. Melmed, S., Williams textbook of endocrinology. 2016: Elsevier Health Sciences.
190. Becker, K.L., Principles and practice of endocrinology and metabolism. 2001: Lippincott Williams & Wilkins.
191. Brody, T.M., J. Larner, K.P. Minneman, and L. Wecker, Brody''s human pharmacology: molecular to clinical. 2005: Elsevier Mosby.
192. Reeves, P.G., F.H. Nielsen, and G.C. Fahey Jr, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. 1993, Oxford University Press.
193. Folch, J., M. Lees, and G.H. Sloane Stanley, A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 1957. 226(1): p. 497-509.
194. Jarfelt, K., M. Dalgaard, U. Hass, J. Borch, H. Jacobsen, and O. Ladefoged, Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate. Reproductive Toxicology, 2005. 19(4): p. 505-515.
195. Takahashi, O. and S. Oishi, Testicular toxicity of dietary 2, 2-bis (4-hydroxyphenyl) propane (bisphenol A) in F344 rats. Archives of toxicology, 2001. 75(1): p. 42-51.
196. Arai, T., S. Kitahara, S. Horiuchi, S. Sumi, and K. Yoshida, Relationship of testicular volume to semen profiles and serum hormone concentrations in infertile Japanese males. Int J Fertil Womens Med, 1998. 43(1): p. 40-7.
197. Jarfelt, K., M. Dalgaard, U. Hass, J. Borch, H. Jacobsen, and O. Ladefoged, Antiandrogenic effects in male rats perinatally exposed to a mixture of di (2-ethylhexyl) phthalate and di (2-ethylhexyl) adipate. Reproductive toxicology, 2005. 19(4): p. 505-515.
198. Ramos, A., A. Pereira, A. Cabrita, and F. Silva, Effects of the food contaminant semicarbazide on testicular morphology of juvenile Wistar rats. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2012. 64(3): p. 781-785.
199. Minisy, F.M., A.A. Massoud, E.A. Omara, F.G. Metwally, and N.S. Hassan,
Protective effect of pumpkin seed extract against testicular toxicity induced by tramadol in adolescent and adult male albino rats: a light and electron microscopic study. Egyptian Pharmaceutical Journal, 2017. 16(1): p. 43.
200. Othman, A.I., G.M. Edrees, M.A. El-Missiry, D.A. Ali, M. Aboel-Nour, and B.R. Dabdoub, Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicology and industrial health, 2016. 32(9): p. 1537-1549.
201. Harada, Y., N. Tanaka, M. Ichikawa, Y. Kamijo, E. Sugiyama, F.J. Gonzalez, and T. Aoyama, PPAR alpha-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Archives of Toxicology, 2016. 90(12): p. 3061-3071.
202. Clark, B.J. and R.K. Cochrum, The steroidogenic acute regulatory protein as a target of endocrine disruption in male reproduction. Drug Metab Rev, 2007. 39(2-3): p. 353-70.
203. Peretz, J. and J.A. Flaws, Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles. Toxicology and applied pharmacology, 2013. 271(2): p. 249-256.
204. Li, Y.F., D.H. Ramdhan, H. Naito, N. Yamagishi, Y. Ito, Y. Hayashi, Y. Yanagiba, A. Okamura, H. Tamada, F.J. Gonzalez, and T. Nakajima, Ammonium perfluorooctanoate may cause testosterone reduction by adversely affecting testis in relation to PPAR alpha. Toxicology Letters, 2011. 205(3): p. 265-272.
205. Clarke, P.R. and D.G. Hardie, Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. Embo j, 1990. 9(8): p. 2439-46.
206. Sever, N., B.L. Song, D. Yabe, J.L. Goldstein, M.S. Brown, and R.A. DeBose-Boyd, Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem, 2003. 278(52): p. 52479-90.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top