跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘珮瑜
研究生(外文):Jung, Pei-Yu
論文名稱:氧化鉭基電阻式記憶體之轉換特性與類神經應用
論文名稱(外文):Resistive Switching Behavior and Synaptic Properties in TaOx-based RRAM Device
指導教授:曾俊元
指導教授(外文):Tseng, Tseung-Yuen
口試委員:韋光華林群傑
口試委員(外文):Wei, Kung-HwaLin, Chun-Chieh
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:61
中文關鍵詞:電阻式記憶體類神經網路氧化鉭類神經運算電子突觸阻態轉換
外文關鍵詞:RRAMneuromorphic computingneural networkTaOxelectronic synapseresistive switching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:576
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
電阻式記憶體具有高密度、低功耗、操作速度快等優勢,更重要的是我們可以利用其可調變的阻值特性來仿效人類大腦在接收外部訊號後神經間突觸權重的變化,以實現能加速人工智慧運算的硬體類神經網路,因此在作為儲存記憶體與電子突觸元件上,電阻式記憶體都扮演著非常重要的角色。
在本文中我們探討氧化鉭基電阻式記憶體之轉換特性與類神經應用。第一部分,我們以鉭/氮化鉭作為氧化鉭基電阻式記憶體之上電極,製作出具有類比權重轉換特性的電阻式記憶體;第二部分,我們研究該元件之類神經特性,包含多重阻態轉換(Multi-level Cell)、突觸權重的增強(Potentiation)與抑制(Depression)行為,並嘗試改變鉭電極之厚度以優化元件特性;第三部分,由於氧化鋁有較低的吉布斯自由能(Gibbs Free Energy)與低離子移動速率之材料特性,我們透過添加一層氧化鋁薄膜讓元件在維持權重更新的線性度時還可大幅提升操作的穩定性,直流電壓操作下阻態轉換可達到104次,在室溫下維持其阻態而不變化長達104秒,元件的增強及抑制行為非線性度分別為2.41與2.77,至少可達到500個類比突觸權重值,且循環的增強及抑制行為可穩定操作高達500次,此改善使我們的元件更適合應用在類神經網路 ; 最後,我們討論該類比突觸元件在添加氧化鋁薄膜前後的電阻轉換機制,並分別建構出對應的導電絲示意圖。
Resistive random access memory (RRAM) is one of the most promising nonvolatile memory due to its low power consumption, high operation speed, and compatible with the conventional CMOS process. Most importantly, the synaptic plasticity of RRAM was explored for potential use as an electronic synapse for neuromorphic computing application.
In this thesis, we demonstrated a novel approach to optimize conductance tuning linearity and switching stability in TaOx based RRAM device. Firstly, we got the analog resistive switching behavior instead of binary switching by using Ta/TaN top electrode. Secondly, we investigated the synaptic properties including multilevel capability and nonlinearity of potentiation and depression behavior on TaN/Ta/TaOx/Pt stack, and engineered device with optimized Ta thickness. Thirdly, by inserting a 1 nm Al2O3 due to its lower Gibbs free energy and lower ion migration speed, the switching stability can be significantly improved while maintaining the high conductance tuning linearity. The DC endurance can up to 104 cycles. The nonlinearity of potentiation and depression are 2.41 and 2.77 with 500 conductance states and show 500 times repeated potentiation and depression cycles with a total of 500000 training pulses. It suggests the analog RRAM can potentially be used as an electronic synapse device for the emerging neuromorphic computation system. Finally, we proposed the switching mechanism and the schematic of filament growth and dissolution of this analog RRAM.
摘要 i
Abstract ii
Acknowledgement iii
Contents iv
Table captions vii
Figure captions viii
Chapter 1 Introduction x
1.1 Introduction to Randam Access Memory 1
1.2 Volatile Memory 1
1.2.1 DRAM 1
1.2.2 SRAM 2
1.3 Nonvolatile Memory 2
1.3.1 Flash Memory 3
1.3.2 MRAM 3
1.3.3 PCRAM 4
1.3.4 FeRAM 5
1.3.5 RRAM 5
1.4 RRAM-based Synapse Devices for neuromorphic Applications 6
1.4.1 Introduction to hardware neural networks 6
1.4.2 Requirements and limitations of the RRAM synapse device 8
1.4.3 Nonlinear Weight Update Model 8

Chapter 2 Mechanism and Opeation of RRAM for Neuromorphic Computing 16
2.1 Structure and Materials of RRAM 16
2.2 Electric Characteristics in RRAM 17
2.2.1 Forming Process 17
2.2.2 Set and Reset Process 18
2.2.3 Classification of Operation Mode 18
2.2.4 Potentiation and Depression 19
2.3 Resistive Switching Mechanism 20
2.3.1 Conductive Filament Model 20
2.3.2 Oxygen Vacancies Migration 20
2.3.3 Cation Migration 21
2.2.4 Joule Heating 22
Chapter 3 Experiment Details 26
3.1 Experiment Process Flow 26
3.2 Sample Fabrication 26
3.2.1Substrate Preparation 26
3.2.2 Fabrication of TiN/Ti/TaOx/Pt device 26
3.2.3 Fabrication of TaN/Ta/TaOx/Pt device 27
3.2.4 Fabrication of TaN/Ta/TaOx/Al2O3/Pt device 28
3.3 Electrical Measurement 28
3.3.1 Current-Voltage(I-V) Measurement 29
3.3.2 Endurance Test 29
3.3.3 Electrical-Pulse-Induced Resistance Switching Measurement 29
3.3.4 Data Retention Time Measurement 30

Chapter 4 Results and Discussion 33
4.1 Motivation 33
4.2 Electrical performances of TaOx-based RRAM Device with Different Top Electrode 34
4.3 Electrical performances of TaN/Ta/TaOx/Pt structure 35
4.4Electrical performances of TaN/Ta/TaOx/Al2O3/Pt structure with thin Al2O3 Film 36
4.5 Resistive Switching Mechanism of TaOx/Al2O3 bilayer RRAM Device 39
Chapter 5 Conclusions 53
References 54
[1] Janousch, M., Meijer, G. I., Staub, U., Delley, B., Karg, S. F., and Andreasson B. P. “ Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory”, Adv. Mater, 19, pp.2232–2235, 2007
[2] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, "Introduction to flash memory," in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, 2003.
[3] T. Y. Tseng and S. M. Sze, “An introduction to nonvolatile memories,” in Nonvolatile Memories: Materials, Devices, and Applications, vol. 1, T. Y. Tseng and S. M. Sze, Eds. Valencia, CA. USA: American Scientific Publishers, pp.1–9,2012.
[4] K. Kim, J. H. Choi, and H.-S. Jeong, “The future prospect of nonvolatile memory,” in Proc. VLSI-TSA, pp. 88–94,2005.
[5] Wang kang, Weisheng Zhao, Erya Deng, Jacques-Olivier Klein, Yuanqing Cheng, Dafiné Ravelosona, Youguang Zhang and Claude Chappert, “A radiation hardened hybrid spintronic/CMOS nonvolatile unit using magnetic tunnel junctions”, J. Phys. D, Appl. Phys., vol. 47, no. 40, pp. 405003–405012, 2014.
[6] Bandiera, S. and B. Dieny, “Magnetic Random Access Memories, in Nanomagnetism: Applications and Perspectives”,Wiley-VCH Verlag GmbH & Co. KGaA.,vol.13 p. 55-80, 2017.
[7] C. Chappert, A. Fert, and F. Nguyen Van Dau, “The Emergence of Spin Electronics in Data Storage”, J. Nat. Mater, vol. 6, pp. 813-823, 2007.
[8] M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage”, nature materials, vol. 6, pp. 824-832, 2007.
[9] Redaelli, A., Pirovano, A., Benvenuti, A. and Lacaita, A. L. “Threshold switching and phase transition numerical models for phase change memory simulations”. J. Appl. Phys. 103, pp.111101, 2008.
[10] Scott,J. F. & Araujo,C. A. “Ferroelectric memories”, Science 246, pp.1400–1405,1989.
[11] J. M. Slaughter, R. W. Dave, M. Durlam, G. Kerszykowski, K. Smith, K. Nagel, B. Feil, J. Calder, M. DeHerrera, B. Garni, and S. Tehrani, “High speed toggle MRAM with MgO-based tunnel junctions”, in IEDM Tech. Dig., pp. 873-876,2005.
[12] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging nonvolatile memory technologies”, in IEDM Tech. Dig, pp. 567-570,2004.
[13] Janousch, M., Meijer, G. I., Staub, U., Delley, B., Karg, S. F., and Andreasson B. P, “Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory”, Adv. Mater. 19, pp. 2232–2235, 2007.
[14] C. A. Mead, “Neuromorphic electronic systems”, Proc. IEEE, vol. 78, pp. 1629–1636, 1990.
[15] K. Moon, S. Lim, J. Park, C. Sung, S. Oh, J. Woo, J. Lee and H. Hwang , “RRAM-based synapse devices for neuromorphic systems”, Faraday Discuss, 213, pp.421–451, 2019.
[16] Shimeng Yu, Yi Wu, Rakesh Jeyasingh, Duygu Kuzum, and H.-S. Philip Wong, “An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation”, IEEE Trans. Electron Devices, vol. 58, no. 8, 2011.
[17] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity”, IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 211–221, 2006.
[18] Burr GW, Shelby RM, Sebastian A, Kim S, Kim S, Sidler S, Virwani K, Ishii M, Narayanan P, Fumarola A, Sanches LL, Boybat I, Le Gallo M, Moon K, Woo J, Hwang H, and Leblebici Y,“ Neuromorphic computing using nonvolatile memory”, Adv Phys-X 2,pp.89–124, 2017.
[19] P.-Y. Chen, B. Lin, L-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-S. Seo, Y. Cao, and S. Yu, “Mitigating effects of non-ideal synaptic device characteristics for on-chip learning”, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.194-199,2015.
[20] Wang, Z. W, Yin, M. H.; Zhang, T, Cai, Y. M, Wang, Y. Y, Yang, Y. C, Huang, R. “Engineering Incremental Resistive Switching in TaOx Based Memristors for Brain-Inspired Computing”, Nanoscale ,8, pp.14015−14022,2016.
[21] Yu S. “Neuro-inspired computing with emerging nonvolatile memorys” Proceedings of the IEEE, 106(2), pp.260-285,2018
[22] G. W. Burr, R. M. Shelby, C. D. Nolfo, J. W. Jang, R. S. Shenoy, and P. Narayanan, “Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element,” in IEDM Tech. Dig., 2014.
[23] T. W. Hickmott, B “Low-frequency negative resistance in thin anodic oxide films”, J. Appl. Phys., vol. 33, pp.2669, 1962.

[24] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEEE International Electron Devices Meeting, pp. 1-4, 2008.
[25] W. Kim, S. I. Park, Z. Zhang, Y. Y. Liauw, D. Sekar, H.-S. P. Wong, and S. S. Wong, “Forming-free nitrogen-doped AlOx RRAM with sub-μA programming Current,” IEEE Symposium on VLSI Technology, pp. 22-23, 2011.
[26] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park,“Reproducible resistance switching in polycrystalline NiO films,” Applied Physics Letters, vol. 85, no. 23, pp. 5655–5657, 2004.
[27] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” Journal of Applied Physics, vol. 98, no. 3, pp. 033715, 2005.
[28] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” IEEE International Electron Devices Meeting, pp. 293–296, 2008.
[29] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, “Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide, ”Appl. Phys. Lett., vol. 89, no. 10, p. 103509, 2006.
[30] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution,” Phys. Rev. B, Condens. Matter, vol. 77, no. 3, pp. 035105, 2008.
[31] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, B, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM ”, in Tech. Dig. IEEE Int. Electron Devices Meeting, pp. 297–300, 2008.
[32] Janousch, M., Meijer, G. I., Staub, U., Delley, B., Karg, S. F., and Andreasson B. P., “Role of Oxygen Vacancies in Cr-Doped SrTiO3forResistance-Change Memory”, Adv. Mater, 19, 2232–2235, 2007.
[33] Belmonte, A., Celano, U., Redolfi, A., Fantini, A., Muller, R., Vandervorst, W., Houssa, M., Jurczak, M. and Goux L. “Analysis of the Excellent Memory Disturb Characteristics of a Hourglass-Shaped Filament in Al2O3/Cu-Based CBRAM Devices”, IEEE Transactions on Electron Devices, 62 , pp.2007-2013, 2015.
[34] Philip Wong H.S., Lee H.Y., Yu S, Chen Y.S., Wu Y, Chen P.S., Lee B, Chen F.T. and Tsai M.J. “Metal–oxide RRAM”, in Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
[35] D. Kuzum, S. Yu, and H. S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology, vol. 24, no. 38, pp. 382001, 2013.
[36] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices”, IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 186–192, 2009.
[37] Szot, K., Dittmann R., Speier, W. and Waser, R. “Nanoscale resistive switching in SrTiO3 thin films”, Physical status solidi (RRL)-Rapid Research Letter, 1(2), pp.86-88, 2007.
[38] J. J. Yang et al., “Engineering nonlinearity into memristors for passive crossbar applications,” Appl. Phys. Lett., vol. 100, no. 11, pp. 113501-1–113501-4, 2012.
[39] A. Prakash, S. Maikap, W. Chen, H. Lee, F. Chen, T. Tien, C. Lai, and M. Tsai, “Device size-dependent improved resistive switching memory performance,” IEEE Trans. Nanotechnol., vol. 13, no. 3, pp. 409–417, 2014.
[40] L. Goux, A. Fantini, A. Redolfi, C.Y. Chen, F.F. Shi , R. Degraeve , Y.Y. Chen , T. Witters , G. Groeseneken, M. Jurczak, and KU Leuven, “Role of the Ta scavenger electrode in the excellent switching control and reliability of a scalable low-current operated TiN\Ta2O5\Ta RRAM device,” in Symp. VLSI Technol. Dig. Tech. Papers, pp. 1–2 ,2014.
[41] Liu, Q., Sun, J., Lv, H., Long, S.,Yin, K., Wan, N., Li, Y,Sun, L., and Liu, M., “Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM,” Adv. Mater. 24, pp.1844–1849, 2012.
[42] Huang, J. S., Lin, Y. C., Tsai, H. W., Yen, W. C., Chen, C. W., Lee, C. Y., Chin, T. S., Chueh, Y. L “Bias polarity-induced transformation of point contact resistive switching memory from single transparent conductive metal oxide layer,” Adv. Electro. Mater. 1, pp.1500061–1500066 ,2015.
[43] R. Nakamura, T. Toda, S. Tsukui, M. Tane, M. Ishimaru, T. Suzuki, H. Nakajima, “ Diffusion of oxygen in amorphous Al2O3 ,Ta2O5 and Nb2O5 ,” J. Appl. Phys., vol. 116, pp. 033504, 2014.
[44] Prakash A, Park J, Song J, Woo J, Cha E-J and Hwang H , “Demonstration of low power 3-bit multilevel cell characteristics in a TaOx-based RRAM by stack engineering,” IEEE Electron Device Letters,vol. 36, pp.32-34, 2015.
[45] J.JoshuaYang, M.X. Zhang, John Paul Strachan, Feng Miao, Matthew D. Pickett, Ronald D. Kelley, G. Medeiros-Ribeiro, and R. Stanley Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett., vol. 97, no. 23, pp. 2321021–232102, 2010.
[46] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” in Tech. Dig. IEEE Int. Electron Devices Meeting, pp. 293–296,2008.
[47] T. L. Tsai, T. H. Ho, and T.Y. Tseng, “Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device,” J. Phys. D, Appl. Phys., vol. 48, no. 3, pp. 035108-1–035108-6, 2015.
[48] V. R. Nallagatla, J. Jo, S. K. Acharya, M. Kim, and C. U. Jung, “Confining vertical conducting filament for reliable resistive switching by using a Au-probe tip as the top electrode for epitaxial brownmillerite oxide memristive device”, Sci. Rep., vol. 9, no. 1, p. 1188, 2019.
[49] Bin Gao, Huaqiang Wu, Wei Wu, Xiaohu Wang, Peng Yao, Yue Xi, Wenqiang Zhang, Ning Deng, Peng Huang, Xiaoyan Liu, Jinfeng Kang, Hong Yu Chen, Shimeng Yu, and He Qian., “Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing”, 2017 IEEE International Electron Devices Meeting (IEDM), pp. 4.4.1-4.4.4,2017.
[50] Lijie Zhang, Ru Huang, Minghao Zhu, Shiqiang Qin, Yongbian Kuang,Dejin Gao, Congyin Shi, and Yangyuan Wang, “Unipolar TaOx-Based Resistive Change Memory Realized With Electrode Engineering,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 966–968, 2010.
[51] W. Banerjee, X. Xu, H. Lv, Q. Liu, S. Long, and M. Liu, “Variability improvement of TiO x /Al2O3 Bilayer Nonvolatile Resistive Switching Devices by Interfacial Band Engineering with an Ultrathin Al2O3 Dielectric Material,” ACS Omega, vol. 2, no. 10, pp. 6888–6895, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊