|
[1] Janousch, M., Meijer, G. I., Staub, U., Delley, B., Karg, S. F., and Andreasson B. P. “ Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory”, Adv. Mater, 19, pp.2232–2235, 2007 [2] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, "Introduction to flash memory," in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, 2003. [3] T. Y. Tseng and S. M. Sze, “An introduction to nonvolatile memories,” in Nonvolatile Memories: Materials, Devices, and Applications, vol. 1, T. Y. Tseng and S. M. Sze, Eds. Valencia, CA. USA: American Scientific Publishers, pp.1–9,2012. [4] K. Kim, J. H. Choi, and H.-S. Jeong, “The future prospect of nonvolatile memory,” in Proc. VLSI-TSA, pp. 88–94,2005. [5] Wang kang, Weisheng Zhao, Erya Deng, Jacques-Olivier Klein, Yuanqing Cheng, Dafiné Ravelosona, Youguang Zhang and Claude Chappert, “A radiation hardened hybrid spintronic/CMOS nonvolatile unit using magnetic tunnel junctions”, J. Phys. D, Appl. Phys., vol. 47, no. 40, pp. 405003–405012, 2014. [6] Bandiera, S. and B. Dieny, “Magnetic Random Access Memories, in Nanomagnetism: Applications and Perspectives”,Wiley-VCH Verlag GmbH & Co. KGaA.,vol.13 p. 55-80, 2017. [7] C. Chappert, A. Fert, and F. Nguyen Van Dau, “The Emergence of Spin Electronics in Data Storage”, J. Nat. Mater, vol. 6, pp. 813-823, 2007. [8] M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage”, nature materials, vol. 6, pp. 824-832, 2007. [9] Redaelli, A., Pirovano, A., Benvenuti, A. and Lacaita, A. L. “Threshold switching and phase transition numerical models for phase change memory simulations”. J. Appl. Phys. 103, pp.111101, 2008. [10] Scott,J. F. & Araujo,C. A. “Ferroelectric memories”, Science 246, pp.1400–1405,1989. [11] J. M. Slaughter, R. W. Dave, M. Durlam, G. Kerszykowski, K. Smith, K. Nagel, B. Feil, J. Calder, M. DeHerrera, B. Garni, and S. Tehrani, “High speed toggle MRAM with MgO-based tunnel junctions”, in IEDM Tech. Dig., pp. 873-876,2005. [12] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging nonvolatile memory technologies”, in IEDM Tech. Dig, pp. 567-570,2004. [13] Janousch, M., Meijer, G. I., Staub, U., Delley, B., Karg, S. F., and Andreasson B. P, “Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory”, Adv. Mater. 19, pp. 2232–2235, 2007. [14] C. A. Mead, “Neuromorphic electronic systems”, Proc. IEEE, vol. 78, pp. 1629–1636, 1990. [15] K. Moon, S. Lim, J. Park, C. Sung, S. Oh, J. Woo, J. Lee and H. Hwang , “RRAM-based synapse devices for neuromorphic systems”, Faraday Discuss, 213, pp.421–451, 2019. [16] Shimeng Yu, Yi Wu, Rakesh Jeyasingh, Duygu Kuzum, and H.-S. Philip Wong, “An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation”, IEEE Trans. Electron Devices, vol. 58, no. 8, 2011. [17] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity”, IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 211–221, 2006. [18] Burr GW, Shelby RM, Sebastian A, Kim S, Kim S, Sidler S, Virwani K, Ishii M, Narayanan P, Fumarola A, Sanches LL, Boybat I, Le Gallo M, Moon K, Woo J, Hwang H, and Leblebici Y,“ Neuromorphic computing using nonvolatile memory”, Adv Phys-X 2,pp.89–124, 2017. [19] P.-Y. Chen, B. Lin, L-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-S. Seo, Y. Cao, and S. Yu, “Mitigating effects of non-ideal synaptic device characteristics for on-chip learning”, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.194-199,2015. [20] Wang, Z. W, Yin, M. H.; Zhang, T, Cai, Y. M, Wang, Y. Y, Yang, Y. C, Huang, R. “Engineering Incremental Resistive Switching in TaOx Based Memristors for Brain-Inspired Computing”, Nanoscale ,8, pp.14015−14022,2016. [21] Yu S. “Neuro-inspired computing with emerging nonvolatile memorys” Proceedings of the IEEE, 106(2), pp.260-285,2018 [22] G. W. Burr, R. M. Shelby, C. D. Nolfo, J. W. Jang, R. S. Shenoy, and P. Narayanan, “Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element,” in IEDM Tech. Dig., 2014. [23] T. W. Hickmott, B “Low-frequency negative resistance in thin anodic oxide films”, J. Appl. Phys., vol. 33, pp.2669, 1962.
[24] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEEE International Electron Devices Meeting, pp. 1-4, 2008. [25] W. Kim, S. I. Park, Z. Zhang, Y. Y. Liauw, D. Sekar, H.-S. P. Wong, and S. S. Wong, “Forming-free nitrogen-doped AlOx RRAM with sub-μA programming Current,” IEEE Symposium on VLSI Technology, pp. 22-23, 2011. [26] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park,“Reproducible resistance switching in polycrystalline NiO films,” Applied Physics Letters, vol. 85, no. 23, pp. 5655–5657, 2004. [27] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” Journal of Applied Physics, vol. 98, no. 3, pp. 033715, 2005. [28] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” IEEE International Electron Devices Meeting, pp. 293–296, 2008. [29] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, “Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide, ”Appl. Phys. Lett., vol. 89, no. 10, p. 103509, 2006. [30] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution,” Phys. Rev. B, Condens. Matter, vol. 77, no. 3, pp. 035105, 2008. [31] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, B, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM ”, in Tech. Dig. IEEE Int. Electron Devices Meeting, pp. 297–300, 2008. [32] Janousch, M., Meijer, G. I., Staub, U., Delley, B., Karg, S. F., and Andreasson B. P., “Role of Oxygen Vacancies in Cr-Doped SrTiO3forResistance-Change Memory”, Adv. Mater, 19, 2232–2235, 2007. [33] Belmonte, A., Celano, U., Redolfi, A., Fantini, A., Muller, R., Vandervorst, W., Houssa, M., Jurczak, M. and Goux L. “Analysis of the Excellent Memory Disturb Characteristics of a Hourglass-Shaped Filament in Al2O3/Cu-Based CBRAM Devices”, IEEE Transactions on Electron Devices, 62 , pp.2007-2013, 2015. [34] Philip Wong H.S., Lee H.Y., Yu S, Chen Y.S., Wu Y, Chen P.S., Lee B, Chen F.T. and Tsai M.J. “Metal–oxide RRAM”, in Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012. [35] D. Kuzum, S. Yu, and H. S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnology, vol. 24, no. 38, pp. 382001, 2013. [36] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices”, IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 186–192, 2009. [37] Szot, K., Dittmann R., Speier, W. and Waser, R. “Nanoscale resistive switching in SrTiO3 thin films”, Physical status solidi (RRL)-Rapid Research Letter, 1(2), pp.86-88, 2007. [38] J. J. Yang et al., “Engineering nonlinearity into memristors for passive crossbar applications,” Appl. Phys. Lett., vol. 100, no. 11, pp. 113501-1–113501-4, 2012. [39] A. Prakash, S. Maikap, W. Chen, H. Lee, F. Chen, T. Tien, C. Lai, and M. Tsai, “Device size-dependent improved resistive switching memory performance,” IEEE Trans. Nanotechnol., vol. 13, no. 3, pp. 409–417, 2014. [40] L. Goux, A. Fantini, A. Redolfi, C.Y. Chen, F.F. Shi , R. Degraeve , Y.Y. Chen , T. Witters , G. Groeseneken, M. Jurczak, and KU Leuven, “Role of the Ta scavenger electrode in the excellent switching control and reliability of a scalable low-current operated TiN\Ta2O5\Ta RRAM device,” in Symp. VLSI Technol. Dig. Tech. Papers, pp. 1–2 ,2014. [41] Liu, Q., Sun, J., Lv, H., Long, S.,Yin, K., Wan, N., Li, Y,Sun, L., and Liu, M., “Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM,” Adv. Mater. 24, pp.1844–1849, 2012. [42] Huang, J. S., Lin, Y. C., Tsai, H. W., Yen, W. C., Chen, C. W., Lee, C. Y., Chin, T. S., Chueh, Y. L “Bias polarity-induced transformation of point contact resistive switching memory from single transparent conductive metal oxide layer,” Adv. Electro. Mater. 1, pp.1500061–1500066 ,2015. [43] R. Nakamura, T. Toda, S. Tsukui, M. Tane, M. Ishimaru, T. Suzuki, H. Nakajima, “ Diffusion of oxygen in amorphous Al2O3 ,Ta2O5 and Nb2O5 ,” J. Appl. Phys., vol. 116, pp. 033504, 2014. [44] Prakash A, Park J, Song J, Woo J, Cha E-J and Hwang H , “Demonstration of low power 3-bit multilevel cell characteristics in a TaOx-based RRAM by stack engineering,” IEEE Electron Device Letters,vol. 36, pp.32-34, 2015. [45] J.JoshuaYang, M.X. Zhang, John Paul Strachan, Feng Miao, Matthew D. Pickett, Ronald D. Kelley, G. Medeiros-Ribeiro, and R. Stanley Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett., vol. 97, no. 23, pp. 2321021–232102, 2010. [46] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” in Tech. Dig. IEEE Int. Electron Devices Meeting, pp. 293–296,2008. [47] T. L. Tsai, T. H. Ho, and T.Y. Tseng, “Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device,” J. Phys. D, Appl. Phys., vol. 48, no. 3, pp. 035108-1–035108-6, 2015. [48] V. R. Nallagatla, J. Jo, S. K. Acharya, M. Kim, and C. U. Jung, “Confining vertical conducting filament for reliable resistive switching by using a Au-probe tip as the top electrode for epitaxial brownmillerite oxide memristive device”, Sci. Rep., vol. 9, no. 1, p. 1188, 2019. [49] Bin Gao, Huaqiang Wu, Wei Wu, Xiaohu Wang, Peng Yao, Yue Xi, Wenqiang Zhang, Ning Deng, Peng Huang, Xiaoyan Liu, Jinfeng Kang, Hong Yu Chen, Shimeng Yu, and He Qian., “Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing”, 2017 IEEE International Electron Devices Meeting (IEDM), pp. 4.4.1-4.4.4,2017. [50] Lijie Zhang, Ru Huang, Minghao Zhu, Shiqiang Qin, Yongbian Kuang,Dejin Gao, Congyin Shi, and Yangyuan Wang, “Unipolar TaOx-Based Resistive Change Memory Realized With Electrode Engineering,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 966–968, 2010. [51] W. Banerjee, X. Xu, H. Lv, Q. Liu, S. Long, and M. Liu, “Variability improvement of TiO x /Al2O3 Bilayer Nonvolatile Resistive Switching Devices by Interfacial Band Engineering with an Ultrathin Al2O3 Dielectric Material,” ACS Omega, vol. 2, no. 10, pp. 6888–6895, 2017.
|