跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧佑銘
研究生(外文):LU,YU-MING
論文名稱:四軸飛行器製作與控制調整與手勢辨識之研究
論文名稱(外文):Research on the building and controlling adjustment of the quadcopter combined with gesture recognition
指導教授:陳彥倫
指導教授(外文):CHEN,YEN-LUN
口試委員:陳彥倫鄭芳田鄭國明
口試委員(外文):CHEN,YEN-LUNCHENG,FAN-TIENCHENG, KUO-MING
口試日期:2019-06-20
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:工業科技教育學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:44
中文關鍵詞:四軸飛行器手勢辨識手勢辨識控制Leap Motion 體感裝置
外文關鍵詞:QuadcopterGesture recognitionGesture recognition controlLeap Motion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
四軸飛行器近幾年風行,容易操控且穩定的特性,可以輕易地執行空拍、競技飛行、救難等任務,本文使用arduino NANO與MPU6050模組來製作四軸飛行器,並認識與熟悉四軸系統的飛行原理,再透過PID控制器的調整,來達成四軸飛行器的穩定飛行,而無線感應裝置的興起,讓手勢辨識得以實現,透過Leap Motion裝置,了解手勢的邏輯,並測試各個手勢的成功率,最後結合Parrot Ardrone2.0來達成手勢辨識控制,發現了手勢間銜接的問題,並更改手勢控制程式中的程式碼,來改善其問題並完成手勢控制實驗,實驗結果顯示手勢辨識的高性能並且達到控制四軸飛行器的需求。
The quadcopter has been popular in recent years because it is stable and easy to control. Therefore, it is applied to many fields, such as shooting, competitive flight, rescue and so on. In this article, Arduino NANO and MPU6050 module were used to make the quadcopter. Understanding the four-axis system flight principles and theories as well as adjusting the PID controller helped to achieve flight stablility of the four-axis aircraft. With the rise of wireless induction devices, the gesture recognition could be realized. Through the Leap Motion device, we could understand the logic of gestures and test the success rate of each gestures. Finally, with combination of Parrot Ardrone2.0 and gesture recognition control, we found the connection problem. The program code in gesture control was changed to solve it, and this experiment was completed then. The experimental results showed the high performance of gesture recognition and the success in controling the quadcopter.
目 錄
目 錄 iv
圖 次 vi
表 次 viii
第一章 緒 論 1
第一節 研究背景與動機 1
第二節 四軸飛行機與PID控制器 2
第三節 Leap Motion 控制器與手勢辨識 5
第二章 四軸飛行器製作與PID控制測試 7
第一節 原理與零件介紹 7
第二節 飛控板焊接與機體組裝 10
第三節 四軸飛行器程式設定與PID控制實驗 13
第四節 四軸飛行器製作與PID控制實驗小結 19
第三章 LEAP MOTION手勢資訊分析 21
第一節 Leap Motion分析與使用 21
第二節 靜態手勢與動態手勢 25
第三節 Leap Motion手勢實驗 29
第四章 手勢控制 31
第一節 手勢控制程式概念與流程 31
第二節 四軸飛行器之手勢控制實驗 34
第五章 結論與建議 37
第一節 結論 37
第二節 建議 37
參考文獻 39
附錄 44
附錄一 四軸飛行器材料表 44



圖 次
圖2-1. 四旋翼螺旋槳與控制方向之示意圖 8
圖2-2. 飛控電路板、單頭排針、杜邦膠座、電阻與LED排列示意圖 11
圖2-3. 飛控板焊接示意圖 11
圖2-4. 飛控板完成圖 12
圖2-5. 四軸飛行器成品 13
圖2-6. Arduino程式編輯之四軸設定 14
圖2-7. Arduino程式編輯之模組設定 14
圖2-8. Multiwiiconf 程式介面 15
圖2-9. PID控制器調整之P值 17
圖2-10. PID控制器調整之I值 18
圖2-11. PID控制器調整之D值 19
圖3-1. 用windows 命令提示字元開啟LeapSDK的開發檔案 21
圖3-2. 使用Microsoft Visual Studio
執行LeapSDK之Leap Motion擷取的手部影像 22
圖3-3. Processing之手指影像模擬 23
圖3-4. Processing之手部影像模擬與詳細資訊 24
圖3-5. 手部Pitch、Roll、Yaw軸向之數據 25
圖3-6. 手與四軸飛行器對應圖 26
圖3-7. 靜態手勢控制四軸飛行器方向移動之實際手勢模擬 26
圖3-8. 動態手勢概念圖 27
圖3-9. 動態手勢控制四軸飛行器運動之實際手勢模擬 28
圖3-10. 手勢測試電腦畫面 29
圖3-11. Leap Motion手勢辨識測試數據 30
圖4-1. 手勢控制程式流程圖 32
圖4-2. 手勢控制Parrot Ardrone2.0實際練習狀況 35
圖4-3. 手勢辨識控制實驗數據 36


表 次
表2-1 Arduino nano 規格表 9
表2-2 MPU6050 規格表 10




Rabah, M., Rohan, A., Mohamed, S. A., & Kim, S. H. (2019). Autonomous Moving Target-Tracking for a UAV Quadcopter Based on Fuzzy-PI. IEEE Access, 7, 38407-38419.
Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2017, February). Fuzzy clustering based nonlinear system identification and controller development of pixhawk based quadcopter. In 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI) (pp. 223-230). IEEE.
Ferdaus, M. M., Anavatti, S. G., Pratama, M., & Garratt, M. A. (2018, November). A Novel Self-Organizing Neuro-Fuzzy based Intelligent Control System for a AR. Drone Quadcopter. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI)(pp. 2026-2032). IEEE.
Jin, H., Chen, Q., Chen, Z., Hu, Y., & Zhang, J. (2016). Multi-LeapMotion sensor based demonstration for robotic refine tabletop object manipulation task. CAAI Transactions on Intelligence Technology, 1(1), 104-113.
Santos, M. F., Honório, L. M., Costa, E. B., Oliveira, E. J., & Visconti, J. P. P. G. (2015, October). Active fault-tolerant control applied to a hexacopter under propulsion system failures. In 2015 19th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 447-453). IEEE.
Nguyen, P. H., Kim, K. W., Lee, Y. W., & Park, K. R. (2017). Remote marker-based tracking for UAV landing using visible-light camera sensor. Sensors, 17(9), 1987.
Wang, P., Man, Z., Cao, Z., Zheng, J., & Zhao, Y. (2016, November). Dynamics modelling and linear control of quadcopter. In 2016 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 498-503). IEEE.
Argentim, L. M., Rezende, W. C., Santos, P. E., & Aguiar, R. A. (2013, May). PID, LQR and LQR-PID on a quadcopter platform. In 2013 International Conference on Informatics, Electronics and Vision (ICIEV) (pp. 1-6). IEEE.
Tang, Y. R., & Li, Y. (2015, August). Dynamic modeling for high-performance controller design of a UAV quadrotor. In 2015 IEEE International Conference on Information and Automation (pp. 3112-3117). IEEE.
Ahmadinejad, F., Bahrami, J., Menhaj, M. B., & Ghidary, S. S. (2019, April). Autonomous Flight of Quadcopters in the Presence of Ground Effect. In 2018 4th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) (pp. 217-223). IEEE.
Talha, M., Asghar, F., Rohan, A., Rabah, M., & Kim, S. H. (2019). Fuzzy Logic-Based Robust and Autonomous Safe Landing for UAV Quadcopter. Arabian Journal for Science and Engineering, 44(3), 2627-2639.
Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation: dynamics, controls design, and autonomous systems. John Wiley & Sons.
Mac, T. T., Copot, C., Duc, T. T., & De Keyser, R. (2016, May). AR. Drone UAV control parameters tuning based on particle swarm optimization algorithm. In 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) (pp. 1-6). IEEE.
Sadigh, R. S. M. (2018, October). Optimizing PID Controller Coefficients Using Fractional Order Based on Intelligent Optimization Algorithms for Quadcopter. In 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM)(pp. 146-151). IEEE.
Radmehr, N., Kharrati, H., & Bayati, N. (2015, November). Optimized design of fractional-order PID controllers for autonomous underwater vehicle using genetic algorithm. In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 729-733). IEEE.
Mohamed, M. J., & Khashan, M. A. Comparison Between PID and FOPID Controllers Based on Particle Swarm Optimization.
Bayati, N., Dadkhah, A., Vahidi, B., & Sadeghi, S. H. H. (2015). FOPID Design for Load-Frequency Control Using Genetic Algorithm. Science International, 27(4).
Bao, N., Ran, X., Wu, Z., Xue, Y., & Wang, K. (2017, December). Research on attitude controller of quadcopter based on cascade PID control algorithm. In 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp. 1493-1497). IEEE.
Mueller, M. W., & D'Andrea, R. (2014, May). Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 45-52). IEEE.
Fatan, M., Sefidgari, B. L., & Barenji, A. V. (2013, August). An adaptive neuro pid for controlling the altitude of quadcopter robot. In 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR) (pp. 662-665). IEEE.
Silva, M. F., Ribeiro, A. C., Santos, M. F., Carmo, M. J., Honório, L. M., Oliveira, E. J., & Vidal, V. F. (2016, October). Design of angular PID controllers for quadcopters built with low cost equipment. In 2016 20th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 216-221). IEEE.
Mitra, S., & Acharya, T. (2007). Gesture recognition: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(3), 311-324.
Alsheakhali, M., Skaik, A., Aldahdouh, M., & Alhelou, M. (2011). Hand gesture recognition system. Information & Communication Systems, 132.
Singha, J., & Das, K. (2013). Hand gesture recognition based on Karhunen-Loeve transform. arXiv preprint arXiv:1306.2599.
Weichert, F., Bachmann, D., Rudak, B., & Fisseler, D. (2013). Analysis of the accuracy and robustness of the leap motion controller. Sensors, 13(5), 6380-6393.
Han, J., & Gold, N. E. (2014, June). Lessons learned in exploring the Leap Motion™ sensor for gesture-based instrument design. Goldsmiths University of London.
Potter, L. E., Araullo, J., & Carter, L. (2013, November). The leap motion controller: a view on sign language. In Proceedings of the 25th Australian computer-human interaction conference: augmentation, application, innovation, collaboration (pp. 175-178). ACM.
Lu, W., Tong, Z., & Chu, J. (2016). Dynamic hand gesture recognition with leap motion controller. IEEE Signal Processing Letters, 23(9), 1188-1192.
Xu, Y., Wang, Q., Bai, X., Chen, Y. L., & Wu, X. (2014, July). A novel feature extracting method for dynamic gesture recognition based on support vector machine. In 2014 IEEE International Conference on Information and Automation (ICIA) (pp. 437-441). IEEE.
Wang, Q., Xu, Y. R., Bai, X., Xu, D., Chen, Y. L., & Wu, X. (2014, April). Dynamic gesture recognition using 3D trajectory. In 2014 4th IEEE International Conference on Information Science and Technology (pp. 598-601). IEEE.
Wang, Q., Xu, Y., Chen, Y. L., Wang, Y., & Wu, X. (2014, December). Dynamic hand gesture early recognition based on Hidden Semi-Markov Models. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014) (pp. 654-658). IEEE.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top