跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳慧珍
研究生(外文):Huei-Jen Chen
論文名稱:自我建構之模糊小腦模型神經網路及其應用
論文名稱(外文):A Self-Constructing Fuzzy CMAC Model and Its Applications
指導教授:林正堅林正堅引用關係
指導教授(外文):Cheng-Jian Lin
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:73
中文關鍵詞:時間相關的問題線上學習演算法小腦模型神經網路高斯函數TSK 型態輸出向量遞歸型網路
外文關鍵詞:temporal problemon-line learning algorithmTSK-type outputrecurrent networkGaussian functionCMAC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一自我建構之模糊小腦模型神經網路及其應用。在自我建構之模糊小腦模型神經網路中,高斯基底函數用於建構容許區域函數及模糊權重函數。另外,為了加強執行效能,以自我建構之模糊小腦模型神經網路為基礎,發展出一自我建構之參數型模糊小腦模型神經網路,其中,高斯基底函數用於建構容許區域函數,而輸入變數的線性組合方程式則用於建構TSK 型態輸出向量。上述兩個所建議的模組,對於時間相關的問題有所侷限,無法有效的表現出物件動向,所以發展出一自我建構之遞歸型模糊小腦模型神經網路,在其中,加入遞歸型網路於容許區域函數中與之相連結,其原理是存在一回授單元用來當作記憶單元,以儲存每次訓練經容許區域函數計算所得之輸出。線上學習演算法用以自動建構此三種所建議的模組,此學習演算法包含架構學習及參數學習。架構學習利用程度測量完成,而參數學習則利用倒傳遞演算法完成。將此三種所建議的模組以多個不同領域的範例來作軟體模擬,模擬後的結果即可證明此三種模組的執行效能及適用性。
In this thesis, a self-constructing fuzzy CMAC (FCMAC) model is proposed for various different applications. The Gaussian basis function is used to model the receptive field functions and the fuzzy weights for the FCMAC model. In order to make the better performance, we develop a self-constructing parametric fuzzy CMAC (called PFCMAC) model, based on the FCMAC model, which the Gaussian basis function is used to model the receptive field functions and the linear parametric equation of the model input variance is used to model the TSK-type outputs. Besides, if these two proposed model’s application domain is limited to static problems as a result of their internal feedforward network structure. To process temporal problems using these two proposed model are inefficient. Then the additional task is adopted which is the recurrent network is embedded in the FCMAC model by adding feedback connections with a receptive field cell to the FCMAC model, where the feedback units act as memory elements that can form the self-constructing recurrent fuzzy CMAC (called RFCMAC) model. An on-line learning algorithm is proposed to automatically construct the FCMAC model, the PFCMAC model, and the RFCMAC model, which consists of a structure learning scheme and a parameter learning scheme. The structure learning is based on the degree measure and the parameter learning is based on backpropagation algorithm. Finally, these three proposed models are applied in several simulations. Simulation results were conducted to illustrate the performance and applicability of these three proposed models.
Abstract in Chinese I
Abstract in English III
Acknowledgements in Chinese V
Contents VI
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The CMAC Model 6
1.3 Organization of This Thesis 9
Chapter 2 The Self-Constructing Fuzzy CMAC Model 11
2.1 Introduction 11
2.2 The Structure of the Self-Constructing Fuzzy CMAC Model 12
2.3 An On-Line Learning Algorithm for the FCMAC Model 15
2.3.1 The Structure Learning Scheme 16
2.3.2 The Parameter Learning Scheme 17
2.4 Simulation Results 20
2.5 Conclusion 24
Chapter 3 The Self-Constructing Parametric Fuzzy CMAC Model 25
3.1 Introduction 25
3.2 The Structure of the Self-Constructing Parametric Fuzzy CMAC Model 26
3.3 An On-Line Learning Algorithm for the PFCMAC Model 29
3.3.1 The Structure Learning Scheme 30
3.3.2 The Parameter Learning Scheme 30
3.4 Simulation Results 32
3.5 Conclusion 40
Chapter 4 The Self-Constructing Recurrent Fuzzy CMAC Model 41
4.1 Introduction 41
4.2 The Structure of the Self-Constructing Recurrent Fuzzy CMAC Model 43
4.3 An On-Line Learning Algorithm for the RFCMAC Model 46
4.3.1 The Structure Learning Scheme 47
4.3.2 The Parameter Learning Scheme 47
4.4 Simulation Results 49
4.5 Conclusion 60
Chapter 5 Conclusion 61
Bibliography 63
Vita 72
Publication List 73
[1] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” Trans. ASME J. Dyn. Syst., Meas., Contr., Sept. 1975, pp. 220-227.
[2] J. S. Albus, “Data storage in the cerebellar model articulation controller (CMAC),” Trans. ASME J. Dyn. Syst., Meas., Contr., Sept. 1975, pp. 228-233.
[3] W. T. Miller, R. P. Hewes, F. H. Glanz, and L. G. Graft, “Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller,” IEEE Trans. on Robotic and Automation, Vol. 6, 1990, pp. 1-6.
[4] A. Kolcz and N. M. Allinson, “Application of the CMAC input encoding scheme in the N-tuple approximation network,” IEE Proc. Comput. Digital Techniques, Vol. 141, 1994, pp. 177-183.
[5] F. H. Glanz, W. T. Miller, and L. G. Graft, “An overview of the CMAC neural network,” Proc. IEEE Neural Networks Ocean Eng., 1991, pp. 301-308.
[6] Y. Iiguni, “Hierarchical image coding via cerebellar model arithmetic computers,” IEEE Trans. Image Processing, vol. 5, pp. 1393-1401, Oct. 1996.
[7] D. Reay, “Nonlinear channel equalization using associative memory neural networks,” in Proc. Int. Wkshp Appl. Neural Networks Telecom., Stockholm, Sweden, 1995, pp. 17-24.
[8] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Contr. Syst. Mag., vol. 12, pp. 23-30, 1992.
[9] C. C. Jou, “A fuzzy cerebellar model articulation controller.” Proc. IEEE Int. Conf. Fuzzy Syst., 1171-1178, 1992, San Diego.
[10] M. C. Hung and D. L. Yang, “The efficient FCM clustering technique,” Proc. IEEE Int. Conf. on Data Mining, pp. 225 -232, 29 Nov.-2 Dec. 2001.
[11] J. He, L. Liu and G. Palm, “Speaker identification using hybrid LVQ-SLP networks,” Proc. IEEE Int. Conf. on Neural Networks, vol. 4, pp. 2052 -2055, 27 Nov.-1 Dec. 1995.
[12] K. K. Ang, C. Quek, and M. Pasquier, “POPFNN-CRI (S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier,” IEEE Trans. on Systems, Man, and Cybernetics—Part B: CYBERNETICS, 2003
[13] W. L. Tung and C. Quek, “GenSoFNN: A Generic self-organizing fuzzy neural network,” IEEE Transactions on Neural Networks, vol. 13, no. 5, pp. 1075-1086, September.2002
[14] N. K. Kasabov, and Q. Song, “DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction,” IEEE Trans. on Fuzzy Systems, vol. 10, no. 2, pp. 144-154, April.2002
[15] M. Y. Chow and A. Menozzi, “A self-organized CMAC controller,” Proc. of the IEEE International Conf. on Industrial Technology, Dec. 5-9, 1994, pp. 68 -72.
[16] K. S. Hwang and C. S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach,” IEEE Trans. on Systems, Man, and Cybernetics-Part B, Vol. 28, No. 5, Oct. 1998, pp. 680-692.
[17] H. M. Lee, C. M. Chen and Y. F. Lu, “A self-organizing HCMAC neural-network classifier, “ IEEE Trans. on Neural Networks, Vol. 14, No. 1, Jan. 2003, pp. 15-27.
[18] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Trans. on Systems, Man, and Cybern., vol. 22, no. 6, pp. 1414-1427, Nov/Dec. 1992.
[19] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. on Syst., Man, Cybern., vol. SMC-15, pp. 116-132, 1985.
[20] J. S. R. Jang, ”ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. on Syst., Man, and Cybern., vol. 23, pp. 665-685, 1993.
[21] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference network and its applications,” IEEE Trans. on Fuzzy Systems, vol. 6, no.1, pp. 12-31, Feb. 1998.
[22] M. Sugeno and G. T. Kang, “Structure identification of a fuzzy model,” Fuzzy Sets Syst., vol. 28, no. 1, pp. 15-33, 1988.
[23] T. Takagi and M. Segeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116-132, Jan./Feb. 1985.
[24] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Trans. on Fuzzy Systems, vol. 9, no. 5, pp. 751-759, Oct. 2001.
[25] K. S. Nardnera and K. Parthasarathy, “Identification and control of dynamical system using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Jan. 1990.
[26] J. Wu and F. Pratt, “Self-organizing CMAC neural networks and adaptive dynamic control,” Proc. IEEE Int. Symp. Intell. Contr./Intell. Systems and Semiotics, Cambridge, MA, Sept. 15-17, 1999, pp. 259-265.
[27] S. Commur and F. L. Lewis, “CMAC neural networks for control of nonlinear dynamical systems: structure, stability, and passivity,” Automatics, Vol. 33, No. 4, 1997, pp. 635-641.
[28] J. S. Ker, C. C. Hsu, Y. H. Huo, and B. D. Liu, “A fuzzy CMAC model for color reproduction,” Fuzzy Sets and Systems, Vol. 91, 1997, pp. 53-68.
[29] K. Zhang and F. Qian, “Fuzzy CMAC and its application,” Proc. of the 3rd World Congress on Intelligent Control and Automation, Hefei, P.R. China, June 28-July 2, 2000, pp. 944-947.
[30] J. Y. Chen, “A VSS-type FCMAC controller,” IEEE International conf. on Fuzzy Systems, Vol. 1, Dec. 2-5, 2001, pp. 872-875.
[31] H. R. Lai and C. C. Wong, “A fuzzy CMAC structure and learning method for function approximation,” IEEE International conf. on Fuzzy Systems, Vol. 1, Dec. 2-5, 2001, pp. 436-439.
[32] C. Guo, Z. Ye, Z. Sun, P. Sarkar, M. Jamshidi, “A hybrid fuzzy cerebellar model articulation controller based autonomous controller,” Computers and Electrical Engineering, Vol. 28, pp. 1-16, 2002.
[33] H. Kim and C. S. Lin, “Use of adaptive resolution for better CMAC learning,” in Proc. IEEE Int. Joint Conf. Neural Networks, Vol. 1, Baltimore, MD, 1992, pp. 517-522.
[34] C. S. Berger, “Linear splines with adaptive mesh sizes for modeling nonlinear dynamic system,” in Proc. Inst. Elect. Eng. Contr. Theory Application,Vol. 141, 1994, pp. 277-286.
[35] B. C. Lovel and A. P. Bradley, “The multiscale classifier,” IEEE Trans. on Pattern Anal. and Machine Intell., Vol. 18, Feb. 1996, pp. 124-137.
[36] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classification rules from data,” Fuzzy Sets and Syst., Vol. 89, No. 3, 1997, pp. 277-288.
[37] R. Setiono and H. Liu, “Neural-network feature selector,” IEEE Trans. on Neural Networks, Vol. 8, June 1997, pp. 654-662.
[38] H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou, “An efficient fuzzy classifier with feature selection based on fuzzy entropy,” IEEE Trans. on Syst., Man, Cybern.:Part-B, Vol. 31, June 2001, pp. 426-432.
[39] J. S. Wang, C. S. George Lee, “Self-adaptive neuro-fuzzy inference systems for classification applications,” IEEE Trans. on Fuzzy Syst., Vol. 10, No. 6, Dec 2002, pp.790-801.
[40] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controllers—Parts I, II,” IEEE Trans. on Syst., Man, Cybern., Vol. 20, pp.404–435, Mar./Apr. 1990.
[41] C. L. Karr and E. J. Gentry, “Fuzzy control of ph using genetic algorithms,” IEEE Trans. on Fuzzy Syst., vol. 1, pp. 46–53, Feb. 1993.
[42] J. Tanomaru and S. Omatu, “Process control by on-line trained neural controllers,” IEEE Trans. on Ind. Electron., Vol. 39, 1992, pp. 511-521.
[43] K.J. Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1989.
[44] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control network” IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp. 477-496 Nov. 1997.
[45] C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 155-170, Apr. 2002
[46] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Ch. 17, Prentice-Hall, 1997.
[47] R. S. Cowder III, “Predicting the Mackey-glass time series with cascade- correlation learning,” In D. Touretzky & G. Hinton & T. Sejnowski, pp.117-123, 1990.
[48] Y. Q. Zhang, Abraham Kandel, “Compensatory Neurofuzzy Systems with Fast Learning Algorithms,” IEEE Trans. on Neural Networks, Vol. 9, No. 1, Jan. 1998, pp. 83-105.
[49] D. Kim and C. Kim, “Forecasting time series with genetic fuzzy predictor ensemble,” IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 523–535, Nov.1997.
[50] M. Russo, “Genetic fuzzy learning,” IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 259–273, Sept. 2000.
[51] L. X. Wang, Adaptive fuzzy systems and control, Englewood Cliffs, NJ: Prentice-Hall, 1994.
[52] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System, NJ: Prentice-Hall, 1996.
[53] S. Paul and S. Kumar, “Subsethood-Product Fuzzy Neural Inference System (SuPFuNIS),” IEEE Trans. on Neural Networks, vol. 13, no. 3, pp. 578-599, May 2002.
[54] J. L. Elman, “Finding Structure in Time,” Cognit. Sci., vol. 14, pp. 179–211, 1990.
[55] J. Zhang and A. J. Morris, “Recurrent Neuro-Fuzzy Networks for Nonlinear Process Modeling,” IEEE Trans. on Neural Networks, vol. 10, no. 2, pp.313-326, 1999.
[56] C. F. Juang and C. T. Lin, “A Recurrent Self-Organizing Neural Fuzzy Inference Network,” IEEE Trans. on Neural Networks, vol. 10, no. 4, pp.828-845, July 1999.
[57] C. H. Lee and C. C. Teng, “Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks,” IEEE Trans. on Fuzzy Systems, vol. 8, no. 4, pp. 349-366, Aug. 2000.
[58] P. A. Mastorocostas and J. B. Theocharis, “A Recurrent Fuzzy-Neural Model for Dynamic System Identification,” IEEE Trans. on Syst., Man, Cybern., vol. 32, no. 2, pp. 176-190, Apr. 2002.
[59] J. H. Kim, D. T. College, A. Gun, and G. Do, “Fuzzy model based predictive control,” in Proc. IEEE Int. Conf. Fuzzy Systems, vol.1, Anchorage, AK, pp. 405-409, May 1998
[60] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic system via a Wiener-type cascade model,” IEEE Trans. Contr. Syst., pp. 29-36, Oct. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top