|
[1] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” Trans. ASME J. Dyn. Syst., Meas., Contr., Sept. 1975, pp. 220-227. [2] J. S. Albus, “Data storage in the cerebellar model articulation controller (CMAC),” Trans. ASME J. Dyn. Syst., Meas., Contr., Sept. 1975, pp. 228-233. [3] W. T. Miller, R. P. Hewes, F. H. Glanz, and L. G. Graft, “Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller,” IEEE Trans. on Robotic and Automation, Vol. 6, 1990, pp. 1-6. [4] A. Kolcz and N. M. Allinson, “Application of the CMAC input encoding scheme in the N-tuple approximation network,” IEE Proc. Comput. Digital Techniques, Vol. 141, 1994, pp. 177-183. [5] F. H. Glanz, W. T. Miller, and L. G. Graft, “An overview of the CMAC neural network,” Proc. IEEE Neural Networks Ocean Eng., 1991, pp. 301-308. [6] Y. Iiguni, “Hierarchical image coding via cerebellar model arithmetic computers,” IEEE Trans. Image Processing, vol. 5, pp. 1393-1401, Oct. 1996. [7] D. Reay, “Nonlinear channel equalization using associative memory neural networks,” in Proc. Int. Wkshp Appl. Neural Networks Telecom., Stockholm, Sweden, 1995, pp. 17-24. [8] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Contr. Syst. Mag., vol. 12, pp. 23-30, 1992. [9] C. C. Jou, “A fuzzy cerebellar model articulation controller.” Proc. IEEE Int. Conf. Fuzzy Syst., 1171-1178, 1992, San Diego. [10] M. C. Hung and D. L. Yang, “The efficient FCM clustering technique,” Proc. IEEE Int. Conf. on Data Mining, pp. 225 -232, 29 Nov.-2 Dec. 2001. [11] J. He, L. Liu and G. Palm, “Speaker identification using hybrid LVQ-SLP networks,” Proc. IEEE Int. Conf. on Neural Networks, vol. 4, pp. 2052 -2055, 27 Nov.-1 Dec. 1995. [12] K. K. Ang, C. Quek, and M. Pasquier, “POPFNN-CRI (S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier,” IEEE Trans. on Systems, Man, and Cybernetics—Part B: CYBERNETICS, 2003 [13] W. L. Tung and C. Quek, “GenSoFNN: A Generic self-organizing fuzzy neural network,” IEEE Transactions on Neural Networks, vol. 13, no. 5, pp. 1075-1086, September.2002 [14] N. K. Kasabov, and Q. Song, “DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction,” IEEE Trans. on Fuzzy Systems, vol. 10, no. 2, pp. 144-154, April.2002 [15] M. Y. Chow and A. Menozzi, “A self-organized CMAC controller,” Proc. of the IEEE International Conf. on Industrial Technology, Dec. 5-9, 1994, pp. 68 -72. [16] K. S. Hwang and C. S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach,” IEEE Trans. on Systems, Man, and Cybernetics-Part B, Vol. 28, No. 5, Oct. 1998, pp. 680-692. [17] H. M. Lee, C. M. Chen and Y. F. Lu, “A self-organizing HCMAC neural-network classifier, “ IEEE Trans. on Neural Networks, Vol. 14, No. 1, Jan. 2003, pp. 15-27. [18] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Trans. on Systems, Man, and Cybern., vol. 22, no. 6, pp. 1414-1427, Nov/Dec. 1992. [19] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. on Syst., Man, Cybern., vol. SMC-15, pp. 116-132, 1985. [20] J. S. R. Jang, ”ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. on Syst., Man, and Cybern., vol. 23, pp. 665-685, 1993. [21] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference network and its applications,” IEEE Trans. on Fuzzy Systems, vol. 6, no.1, pp. 12-31, Feb. 1998. [22] M. Sugeno and G. T. Kang, “Structure identification of a fuzzy model,” Fuzzy Sets Syst., vol. 28, no. 1, pp. 15-33, 1988. [23] T. Takagi and M. Segeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116-132, Jan./Feb. 1985. [24] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Trans. on Fuzzy Systems, vol. 9, no. 5, pp. 751-759, Oct. 2001. [25] K. S. Nardnera and K. Parthasarathy, “Identification and control of dynamical system using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Jan. 1990. [26] J. Wu and F. Pratt, “Self-organizing CMAC neural networks and adaptive dynamic control,” Proc. IEEE Int. Symp. Intell. Contr./Intell. Systems and Semiotics, Cambridge, MA, Sept. 15-17, 1999, pp. 259-265. [27] S. Commur and F. L. Lewis, “CMAC neural networks for control of nonlinear dynamical systems: structure, stability, and passivity,” Automatics, Vol. 33, No. 4, 1997, pp. 635-641. [28] J. S. Ker, C. C. Hsu, Y. H. Huo, and B. D. Liu, “A fuzzy CMAC model for color reproduction,” Fuzzy Sets and Systems, Vol. 91, 1997, pp. 53-68. [29] K. Zhang and F. Qian, “Fuzzy CMAC and its application,” Proc. of the 3rd World Congress on Intelligent Control and Automation, Hefei, P.R. China, June 28-July 2, 2000, pp. 944-947. [30] J. Y. Chen, “A VSS-type FCMAC controller,” IEEE International conf. on Fuzzy Systems, Vol. 1, Dec. 2-5, 2001, pp. 872-875. [31] H. R. Lai and C. C. Wong, “A fuzzy CMAC structure and learning method for function approximation,” IEEE International conf. on Fuzzy Systems, Vol. 1, Dec. 2-5, 2001, pp. 436-439. [32] C. Guo, Z. Ye, Z. Sun, P. Sarkar, M. Jamshidi, “A hybrid fuzzy cerebellar model articulation controller based autonomous controller,” Computers and Electrical Engineering, Vol. 28, pp. 1-16, 2002. [33] H. Kim and C. S. Lin, “Use of adaptive resolution for better CMAC learning,” in Proc. IEEE Int. Joint Conf. Neural Networks, Vol. 1, Baltimore, MD, 1992, pp. 517-522. [34] C. S. Berger, “Linear splines with adaptive mesh sizes for modeling nonlinear dynamic system,” in Proc. Inst. Elect. Eng. Contr. Theory Application,Vol. 141, 1994, pp. 277-286. [35] B. C. Lovel and A. P. Bradley, “The multiscale classifier,” IEEE Trans. on Pattern Anal. and Machine Intell., Vol. 18, Feb. 1996, pp. 124-137. [36] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classification rules from data,” Fuzzy Sets and Syst., Vol. 89, No. 3, 1997, pp. 277-288. [37] R. Setiono and H. Liu, “Neural-network feature selector,” IEEE Trans. on Neural Networks, Vol. 8, June 1997, pp. 654-662. [38] H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou, “An efficient fuzzy classifier with feature selection based on fuzzy entropy,” IEEE Trans. on Syst., Man, Cybern.:Part-B, Vol. 31, June 2001, pp. 426-432. [39] J. S. Wang, C. S. George Lee, “Self-adaptive neuro-fuzzy inference systems for classification applications,” IEEE Trans. on Fuzzy Syst., Vol. 10, No. 6, Dec 2002, pp.790-801. [40] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controllers—Parts I, II,” IEEE Trans. on Syst., Man, Cybern., Vol. 20, pp.404–435, Mar./Apr. 1990. [41] C. L. Karr and E. J. Gentry, “Fuzzy control of ph using genetic algorithms,” IEEE Trans. on Fuzzy Syst., vol. 1, pp. 46–53, Feb. 1993. [42] J. Tanomaru and S. Omatu, “Process control by on-line trained neural controllers,” IEEE Trans. on Ind. Electron., Vol. 39, 1992, pp. 511-521. [43] K.J. Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1989. [44] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control network” IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp. 477-496 Nov. 1997. [45] C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 155-170, Apr. 2002 [46] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Ch. 17, Prentice-Hall, 1997. [47] R. S. Cowder III, “Predicting the Mackey-glass time series with cascade- correlation learning,” In D. Touretzky & G. Hinton & T. Sejnowski, pp.117-123, 1990. [48] Y. Q. Zhang, Abraham Kandel, “Compensatory Neurofuzzy Systems with Fast Learning Algorithms,” IEEE Trans. on Neural Networks, Vol. 9, No. 1, Jan. 1998, pp. 83-105. [49] D. Kim and C. Kim, “Forecasting time series with genetic fuzzy predictor ensemble,” IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 523–535, Nov.1997. [50] M. Russo, “Genetic fuzzy learning,” IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 259–273, Sept. 2000. [51] L. X. Wang, Adaptive fuzzy systems and control, Englewood Cliffs, NJ: Prentice-Hall, 1994. [52] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System, NJ: Prentice-Hall, 1996. [53] S. Paul and S. Kumar, “Subsethood-Product Fuzzy Neural Inference System (SuPFuNIS),” IEEE Trans. on Neural Networks, vol. 13, no. 3, pp. 578-599, May 2002. [54] J. L. Elman, “Finding Structure in Time,” Cognit. Sci., vol. 14, pp. 179–211, 1990. [55] J. Zhang and A. J. Morris, “Recurrent Neuro-Fuzzy Networks for Nonlinear Process Modeling,” IEEE Trans. on Neural Networks, vol. 10, no. 2, pp.313-326, 1999. [56] C. F. Juang and C. T. Lin, “A Recurrent Self-Organizing Neural Fuzzy Inference Network,” IEEE Trans. on Neural Networks, vol. 10, no. 4, pp.828-845, July 1999. [57] C. H. Lee and C. C. Teng, “Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks,” IEEE Trans. on Fuzzy Systems, vol. 8, no. 4, pp. 349-366, Aug. 2000. [58] P. A. Mastorocostas and J. B. Theocharis, “A Recurrent Fuzzy-Neural Model for Dynamic System Identification,” IEEE Trans. on Syst., Man, Cybern., vol. 32, no. 2, pp. 176-190, Apr. 2002. [59] J. H. Kim, D. T. College, A. Gun, and G. Do, “Fuzzy model based predictive control,” in Proc. IEEE Int. Conf. Fuzzy Systems, vol.1, Anchorage, AK, pp. 405-409, May 1998 [60] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic system via a Wiener-type cascade model,” IEEE Trans. Contr. Syst., pp. 29-36, Oct. 1997.
|