跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 00:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏元
研究生(外文):Po-Yuan Huang
論文名稱:汽電廠區電力系統負載重整檢討
論文名稱(外文):Load Reorganization Study for Cogeneration System
指導教授:陳斌魁陳斌魁引用關係
指導教授(外文):Bin-Kwie Chen
口試委員:陳斌魁
口試委員(外文):Bin-Kwie Chen
口試日期:2018-07-27
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:102
中文關鍵詞:負載潮流虛功進相運轉失磁保護
外文關鍵詞:Loss of Field ProtectionReactive PowerLeading Power Factor OperationLoad Flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電力供電之可靠度及穩定性為汽電廠區生產線重要命脈,萬一發生重大電力事故,無法即時將事故侷限於局部,可能發生龐大停電損失,本論文研究之樣本系統曾經歷多次虛功擾動事件伴隨系統電壓升高,虛功倒灌發電機組的情況,導致發電機組失磁跳機;民國101年6月20日樣本汽電廠發生嚴重電力事故,暴露廠區電力系統仍存在弱點,諸如汽一區、汽二區及海豐區共5迴線接於相同匯流排上,負載過度集中,且汽一區、汽二區及海豐區皆為重要負載,若遭遇獨立運轉時須卸載大量重要負載造成嚴重生產損失;ML2A區無發電機組,此區獨立運轉時所有負載皆須停電,經廠內各單位檢討,針對上述系統架構缺點進行負載饋線重整改善,由於連續性生產製程不能停電,廠區提出之電力系統負載架構重整計畫將分成六階段逐步進行改接工程。某研究團隊曾針對改接完成之新電力系統架構進行電力系統分析(潮流及暫態穩定度),由其106年4月完成之負載重整後防禦計畫研究報告,發現重整後的汽電廠區電力系統仍存有虛功問題,本論文將從新電力系統架構進行潮流分析,於六階段的不同負載重整架構,找出於第幾階段的改接工程,系統會出現虛功問題,並對此提出因應改善對策;此外,本研究同時評估可能發生的特定條件下,發電機組是否因虛功問題導致進相運轉觸碰失磁保護圈設定,預防供電可靠度上的疑慮。
Having reliable and stable power supply is essential to the power generation of cogeneration plants. If a power blackout occurs and cannot be restricted to a local area, the subsequent major power blackout may result in substantial losses. The sample cogeneration plant that had undergone multiple reactive power disturbance events, which increased the system voltage and injected the reactive power into the generators, resulting in generator trip due to loss of field. On June 20, 2012, the sample cogeneration plant caused a major power blackout, reflecting that the power system still possessed various shortcomings. For example, the five tie lines in the ML1, ML2, and HF areas were connected to the same bus, resulting in an overly concentrated load. Loads in these three areas were considered critical loads; hence, during the island mode operation, many critical loads must be shed, leading to substantial production losses. The ML2A area did not contain any generator; hence, the island mode operation of this area required shedding every load. After discussion between units of the plant, improvement measures were proposed according to the aforementioned shortcomings to reconfigure the load feeders. Because the cogeneration plant needs to maintain a continuous production process, a six-phase restructuring plan was proposed to gradually modify the load structure of the power system. Previously, a research team has analyzed the modified system of the sample cogeneration plant of its load flow and transient stability, and completed a power system defense plan in April of 2017. The plan reveals that the modified system still possessed problems concerning reactive power disturbance. Therefore, this study conducted a load flow analysis on the restructuring plan to identify which restructuring stage led to the reactive power problem, and improvement measures were proposed accordingly. In addition, reactive power disturbance were evaluated to determine whether under those circumstances, the generators did not trigger the loss-of-field protection mechanism during a leading power factor operation. These evaluations addressed concerns about service reliability.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VIII
第壹章 緒論 1
1.1 研究背景與動機 1
1.2 研究內容 4
1.3 章節簡述 5
第貳章 樣本電力系統重整架構檢討 6
2.1 樣本系統簡介 6
2.2 虛功控制調節 9
2.2.1 發電機運轉模式 9
2.2.2 變壓器OLTC (On Load Tap Changer , OLTC) 11
2.2.3 電容器 11
2.3 樣本電力系統負載架構重整及潮流 12
2.3.1 第一階段:IEM #2、IEM #3改接至ML2區 16
2.3.2 第二階段:UPB機組改接至ML2A區 17
2.3.3 第三階段:ML2區D群負載改接至ML2A區 19
2.3.4 第四階段:海豐區改接至ML2A區 20
2.3.5 第五階段:ML2區E群負載改接至ML2/TPC區 30
2.3.6 第六階段:海豐區K群負載改接至ML2A區 31
第參章 第四階段模擬事故額外案例選擇 33
3.1 擬分析之電力潮流案例 33
3.2 樣本系統內部大機組定期檢修 35
3.2.1 電力潮流分析結果 35
3.2.2 獨立運轉之案例選擇 40
3.3 模擬事故案例分析(獨立運轉) 40
3.3.1 電力潮流分析結果 41
3.3.2 分析結果探討與建議 44
第肆章 發電機失磁保護檢討 50
4.1 發電機容量曲線(Generator Capability Curve) 50
4.1.1 虛功容量限制(Reactive Capability Limits) 51
4.1.2 穩態穩定度曲線(Steady-State Stability Curves) 51
4.1.3 欠激磁限制器UEL (Underexcitation Limiter) 53
4.2 發電機失磁保護 54
4.2.1 發電機失磁狀況的發生 54
4.2.2 發電機失磁電驛特性 54
4.3 樣本系統同步發電機失磁保護 58
第伍章 結論與建議 65
5.1 結論 65
5.2 建議 66
參考文獻 68
附錄1 樣本汽電廠區電力系統負載重整專案改善 70
附錄2 樣本汽電廠區電力系統架構重整改善預定時程 76
附錄3 樣本系統發電機組定檢排程 77
附錄4 汽電廠發電量彙總表 78
附錄5 汽電廠負載彙總表 82
附錄6 樣本系統大容量機組電壓預定表 91
附錄7 變壓器資料彙總表 93
附錄8 汽電廠電纜參數表 96
附錄9 電力潮流輸入之線路資料 98
附錄10 電力潮流輸入之離峰匯流排資料 101
[1]C. H. Lee, L. S. Ma, C. H. Weng, and B. K. Chen,“Lessons learned from the generator loss of field at a cogeneration thermal power plant in Taiwan,”IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2093-2100, Oct. 2011.
[2]六輕電力系統無效功率過剩檢討避免發電機失磁跳脫報告.
[3]C. J. Mozina,“Coordinating generator protection with transmission protection and generator control — NERC standards and pending requirements,”2010 63rd Annual Conference for Protective Relay Engineers, pp. 1-12, 2010.
[4]馬鈴聲、翁慶祥,“系統無效功率倒灌導致汽電共生廠發電機失磁跳脫的防禦對策,”電機技師雙月刊, vol. 20, no. 4, pp.70-82, Aug. 2006.
[5]“台塑麥寮廠電力系統負載重整後防禦計畫研究案,”Apr. 2017.
[6]李永義,“汽電廠虛功控制管理研究,”大同大學碩士論文, Jul. 2011.
[7]M. M. Adibi, R. A. Polyak, I. A. Griva, L. Mili, and S. Ammari,“Optimal transformer tap selection using modified barrier-augmented Lagrangian method,”IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 251-257, Feb. 2003.
[8]C. Vournas, and M. Karystianos,“Load Tap Changers in Emergency and Preventive Voltage Stability Control,”IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 492-498, Feb. 2004.
[9]新港廠區電力系統無效電力改善計畫檢討報告.
[10]許天賜,“汽電共生廠自動卸載,”電機技師雙月刊, vol. 16, no. 3, pp. 59-70, Jun. 2002.
[11]T. W. Eberly, and R. C. Schaefer,“Voltage Versus Var/Power Factor Regulation on Synchronous Generators,”IEEE Transactions on Industry Applications, vol. 38, no. 6, pp. 1682-1687, Dec. 2002.
[12]IEEE Guide for the Preparation of Excitation System Specifications, IEEE Std 421.4, Apr. 2004.
[13]IEEE Task Force on Excitation Limiters,“Underexcitation limiter models for power system stability studies,”IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 524-531, Sep. 1995.
[14]G. K. Girgis, and H. D. Vu,“Verification of limiter performance in modern excitation control systems,”IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 538-542, Sep. 1995.
[15]IEEE Tutorial on the Protection of Synchronous Generators, IEEE Power System Relaying Committee Special Publication, no.95, TP 102, 1995.
[16]IEEE Guide for AC Generator Protection, IEEE Standard C37.102-2006, Feb. 2007.
[17]J. H. Hans, and Diego Gao,“Underexcitation Protection based on Admittance Measurement–Excellent Adaptation on Generator Capability Curves,”Siemens AG.
[18]王柏欽,“靜態模擬法與時間模擬法對汽電共生廠卸載分析之比較,”大同大學碩士論文, Jul. 2000.
[19]“台塑六輕麥寮廠電力系統潮流分析,”Oct. 2003.
[20]G. R. Berube, L. M. Hajagos, and R. E. Beaulieu,“A Utility Perspective on Under-Excitation Limiters,”IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 532-537, Aug. 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top