|
1. Björn Schuller; Gerhard Rigoll; Manfred Lang, Hidden markov model-based speech emotion recognition, in Multimedia and Expo. 2003. p. I-401. 2. Tin Lay Nwe; Say Wei Foo; Liyanage C De Silva, Speech emotion recognition using hidden markov models. Speech communication, 2003. 41(4): p. 603-623. 3. Antonio Camurri; Ingrid Lagerlof; Gualtiero Volpe, Recognizing emotion from dance movement: comparison of spectator recognition and automated techniques. International journal of human-computer studies, 2003. 59: p. 213–225. 4. Andrew J Calder, “Facial emotion recognition after bilateral amygdala damage: differentially severe impairment of fear. Cognitive Neuropsychology, 1996. 13: p. 699–745. 5. Liyanage C De Silva; Tsutomu Miyasato; Ryohei Nakatsu, Facial emotion recognition using multimodal information, in Information, Communications and Signal Processing. 1997. p. 397–401. 6. Jeong-Sik Park; Ji-Hwan Kim; Yung-Hwan Oh, Feature vector classification based speech emotion recognition for service robots. IEEE Transactions on Consumer Electronics, 2009. 55(3). 7. Cynthia Breazeal; Lijin Aryananda, Recognition of affective communicative intent in robot-directed speech. Autonomous robots, 2002. 12(1): p. 83-104. 8. Kristin Byron; Sophia Terranova; Stephen Nowicki, Nonverbal emotion recognition and salespersons: Linking ability to perceived and actual success. Journal of Applied Social Psychology, 2007. 37(11): p. 2600-2619. 9. Alex Pentland, Healthwear: medical technology becomes wearable. Computer, 2004. 37(5): p. 42-49. 10. Michael Neumann; Ngoc Thang Vu. Attentive Convolutional Neural Network based Speech Emotion Recognition: A Study on the Impact of Input Features, Signal Length, and Acted Speech. 2017. 11. Wenming Zheng; Minghai Xin; Xiaolan Wang; Bei Wang, A Novel Speech Emotion Recognition Method via Incomplete Sparse Least Square Regression. IEEE Signal Processing Letters, 2014. 21: p. 569-572. 12. Maximilian Schmitt; Fabien Ringeval; Bjorn Schuller, At the Border of Acoustics and Linguistics: Bag-of-Audio-Words for the Recognition of Emotions in Speech. INTERSPEECH, 2016: p. 495-499. 13. Bjorn Schuller; Stefan Steidl; Anton Batliner; et al, The INTERSPEECH 2013 Computational Paralinguistics Challenge: Social signals, conflict, emotion, autism, in INTERSPEECH. 2013. p. 148–152. 14. Fabien Ringeval; Björn Schuller; Michel Valstar; Shashank Jaiswal; Erik Marchi; Denis Lalanne; Roddy Cowie; Maja Pantic, AV+EC 2015 – The First Affect Recognition Challenge Bridging Across Audio, Video, and Physiological Data, in Proceedings of the 5th International Workshop on Audio/Visual Emotion Challenge. 2015. p. 3-8. 15. Mousmita Sarma; Pegah Ghahremani; Daniel Povey; et al, Emotion Identification from raw speech signals using DNNs, in INTERSPEECH. 2018. 16. Pegah Ghahremani; Vimal Manohar; Daniel Povey; Sanjeev Khudanpur, Acoustic modelling from the signal domain using CNNs, in INTERSPEECH. 2016. 17. Egor Lakomkin; Cornelius Weber; Sven Magg; Stefan Wermter, Reusing Neural Speech Representations for Auditory Emotion Recognition, in Proceedings of the Eighth International Joint Conference on Natural Language Processing. 2017. 18. Zixiaofan Yang; Julia Hirschberg, Predicting Arousal and Valence from Waveforms and Spectrograms Using Deep Neural Networks, in INTERSPEECH. 2018. 19. Carlos Busso; Murtaza Bulut; Chi-Chun Lee, Iemocap: Interactive emotional dyadic motion capture database. Language resources and evaluation, 2008. 42(4): p. 335. 20. Haytham M. Fayek; Margaret Lech; Lawrence Cavedon, Evaluating deep learning architectures for speech emotion recognition. Neural Networks, 2017. 92: p. 60-68. 21. Carlos Busso; Srinivas Parthasarathy; Alec Burmania; et al, MSP-IMPROV: An acted corpus of dyadic interactions to study emotion perception. IEEE Transactions on Affective Computing, 2015. 22. Florian Eyben; Klaus R Scherer; Björn Schuller; et al, The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing. IEEE Transactions on Affective Computing, 2016. 7(2): p. 190-202. 23. Jing Han; Zixing Zhang; Gil Keren; Björn Schuller, Emotion Recognition in Speech with Latent Discriminative Representations Learning, in Acta Acustica united with Acustica. 2018. p. 737-740. 24. Zakaria Aldeneh; Emily Mower Provost, Using regional saliency for speech emotion recognition, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. p. 2741??2745. 25. Florian Eyben; Felix Weninger; Florian Gross; Björn Schuller, Recent developments in opensmile, the munich open-source multimedia feature extractor, in Proceedings of the 21st ACM international conference on Multimedia. 2013. p. 835-838. 26. Florian Eyben; Martin Wöllmer; Böjrn Schuller, The openSMILE book - openSMILE: The Munich Versatile and Fast Open-Source Audio Feature Extractor, in ACM Multimedia. 2010. 27. Saurabh Sahu; Rahul Gupta; Carol Espy-Wilson, On enhancing speech emotion recognition using generative adversarial networks. 2018, arXiv preprint arXiv:1806.06626. 28. Shizhe Chen; Qin Jin; Xirong Li; Gang Yang; Jieping Xu, Speech emotion classification using acoustic features, in 9th International Symposium on Chinese Spoken Language Processing (ISCSLP). 2014. p. 579-583. 29. Orith Toledo-Ronen; Alexander Sorin, Voice-based sadness and anger recognition with cross-corpora evaluation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2013. p. 7517-7521. 30. Frank Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain. Psychological review, 1958. 31. David E. Rumelhart; Geoffrey E. Hinton; Ronald J. Williamss, Learning representations by backpropagating errors. Cognitive modeling, 1988. 32. Geoffrey E. Hinton; Ruslan R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science, 2006. 33. Alex Krizhevsky; Ilya Sutskever; Geoffrey E. Hinton, Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012. 34. S. Lawrence; C.L. Giles; Ah Chung Tsoi; A.D. Back, Face recognition: a convolutional neural-network approach. IEEE Transactions on Neural Networks, 1997. 8: p. 98-113. 35. Shuiwang Ji; Wei Xu; Ming Yang; Kai Yu, 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013. 35(1): p. 221-231. 36. Ronald J. Williams; David Zipser, A learning algorithm for continually running fully recurrent neural networks. Neural computation, 1989. 1(2): p. 270-280. 37. Grégoire Mesnil; Xiaodong He; Li Deng; Yoshua Bengio, Investigation of Recurrent-Neural-Network Architectures and Learning Methods for Spoken Language Understanding. INTERSPEECH, 2013. 38. Tomáš Mikolov; Stefan Kombrink; Lukáš Burget; et al, Extensions of recurrent neural network language model IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011. 39. Tomas Mikolov; Martin Karafiat; Lukas Burget; et al, Recurrent neural network based language model. INTERSPEECH, 2010. 2. 40. Haşim Sak; Andrew Senior; Kanishka Rao; Françoise Beaufays, Fast and accurate recurrent neural network acoustic models for speech recognition. arXiv:1507.06947, 2015. 41. Sepp Hochreiter; Jürgen Schmidhuber, Long Short-Term Memory. Neural computation, 1997. 42. Y. Bengio; P. Simard; P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 1994. 5(2): p. 157 - 166. 43. Klaus Greff; Rupesh K. Srivastava; Jan Koutník; et al, LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems 2017. 28(10): p. 2222 - 2232. 44. Haşim Sak; Andrew Senior; Françoise Beaufays, Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv:1402.1128 2014. 45. Has¸im Sak; Andrew Senior; Franc¸oise Beaufays, Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. INTERSPEECH, 2014. 46. Panagiotis Tzirakis; George Trigeorgis; Mihalis A. Nicolaou; Böjrn Schuller; Stefanos Zafeiriou, End-to-end multimodal emotion recognition using deep neural networks. IEEE Journal of Selected Topics in Signal Processing, 2017. 11(8): p. 1301-1309.
|