[1]S.G. Rhee, H2O2, a necessary evil for cell signaling, Science, 312(2006) 1882-3.
[2]J.D. Lambeth, NOX enzymes and the biology of reactive oxygen, Nature Reviews Immunology, 4(2004) 181-9.
[3]J.K. Andersen, Oxidative stress in neurodegeneration: cause or consequence?, (2004).
[4]L.-L. Qu, et al., Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics, 77(2016) 292-8.
[5]M. Giorgio, et al., Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?, Nature reviews Molecular cell biology, 8(2007) 722-8.
[6]P. Wu, et al., Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells, Chemical Communications, 47(2011) 11327-9.
[7]Y. Zhang, et al., Graphene quantum dots/gold electrode and its application in living cell H2O2 detection, Nanoscale, 5(2013) 1816-9.
[8]J. Ju, W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments, Analytical chemistry, 87(2015) 1903-10.
[9]S. Dong, et al., High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells, Analytica chimica acta, 853(2015)200-6.
[10]J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics, 74(2015)71-7.
[11]P. Saber, W. Lund, Morphology of Pycnoporus Coccineus (FR.) Bond. And Sing. In vitro, Talanta, 29(1982)457.
[12]J. Wang, D. L. Hutchins-Kumar, Parallel dual-electrode detection based on size exclusion for liquid chromatography/electrochemistry, Anal. Chem., 58 (1986) 402.
[13]R. P. Baldwin, Thomsen, K. N. Talanta, Chemically modified electrodes in liquid chromatography detection: A review, 38(1991)1.
[14]R.W.Murra, A. G. Ewing, R. A. Durst, Chemically modified electrodes. Molecular design for electroanalysis, Anal. Chem., 59(1987)379A.
[15]Tîlmaciu C-M, Morris MC(2015)Carbon nanotube biosensors. Front. Chem. 3:59
[16]M. A. Gilmartin, J. P. Hart, Sensing with chemically and biologically modified carbon electrodes. A review., Analyst, 120(1995)1029.
[17]J. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, 102(1962)29
[18]Sigma Chemical Co., Material Safety Data Sheet(2000)
[19]Windhol M, ed. (1995) The Merck Index, 12th Ed. New York: Merck amd Co. Inc.
[20]Acworth IN, Bailey B.(1995)The Handbook of Oxidative Metabolism. Chelmsford, MA: ESA, Inc.
[21]Stryer, L.(1995)Biochemistry Fourth Ed. New York: W. H. Freeman and Company.
[22]Hindawi Publishing Corporation Advances in Hematology Volume (2012)
[23]Koji Fukui. J. Clin. Biochem. Nutr. November 2016. vol. 59 no. 3
[24]A Highly Selective Fluorescent Chemosensor for Lead Ions" Chen, C.-T.; Huang, W.-P. J. Am. Chem. Soc. 2002, 124, 6246-6247
[25]Hatsuo Maeda, Yuka Fukuyasu, Shoko Yoshida,Masako Fukuda, Kanako Saeki, Hiromi Matsuno,Yuji Yamauchi, Kenji Yoshida, Kazumasa Hirata, and Kazuhisa Miyamoto Angew. Chem. Int. Ed.2004, 43, 2389–2391
[26]Krzysztof Żamojć, Magdalena Zdrowowicz, Dagmara Jacewicz, Dariusz Wyrzykowski & Lech Chmurzyński (2016) Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions, Critical Reviews in Analytical Chemistry, 46:3, 171-200
[27]楊曉燕,增強化學發光分析新體系的研究及其在免疫分析中的應用,青島科技大學博士論文
[28]Naoya YAMASHIRO , Shunsuke UCHIDA , Yoshiyuki SATOH , Yusuke MORISHIMA , Hiroaki YOKOYAMA , Tomonori SATOH , Junichi SUGAMA & Rie YAMADA (2004) Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (I), Journal of Nuclear Science and Technology, 41:9, 890-897
[29]Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 6th ed.; Brooks/Cole: Belmont, 2007; pp. 336-342.
[30]Raquel F. Pupo Nogueira, Mirela C. Oliveira, Willian C. Paterlini. R.F.P. Nogueira et al. / Talanta 66 (2005) 86–91
[31]Skoog and J. J. Leary, Principles of Intrumetntal Analysis, 4th ed. Pliladelphia: Saynders College Publishing, (1992)
[32]Abdollah Salimi, Leyla Miranzadeh, Rahman Hallaj, Hussein Mamkhezria. Electroanalysis 20, 2008, No. 16, 1760–1768
[33]蕭米珍,淺談普魯士藍-Prussian blue,高雄女中化學學科中心。
[34]R. Zhang, W. Chen, Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors, Biosensors and Bioelectronics, 89(2017) 249-68.
[35]Arkady A. Kayakin, Olga V. Gitelmacher and Elena E. Kayakina Analytical Chemistry, Vol. 67, No. 14, July 15, 1995
[36]F. Ricci, G. Palleschi / Biosensors and Bioelectronics 21 (2005) 389–407
[37]B.R. Stoner, J.T. Glass, Carbon nanostructures: A morphological classification for charge density optimization, Diamond and Related Materials, 23(2012) 130-4.
[38]蘇清源,石墨烯量產技術與產業應用,光速雙月刊,2013年11月,no.108
[39]蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,2011年4月[40]Martin Pumera. Graphene in biosensing, MATERIALSTODAY JULY-AUGUST 2011 | VOLUME 14 | NUMBER 7-8
[41]S. Iijima, Nature, 354,(1991)56
[42]張家銘,以奈米碳管為基材的生物感測器,中國文化大學,2009年
[43]羅聖全,電子顯微鏡介紹 –SEM,材料世界網,小奈米大世界
[44]林麗娟,X光繞射原理與其應用,工業材料第86期,1994年2月[45]G. Varsanyi, “Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives”, Wiley, New York, 1974.
[46]Impedance Spectroscopy: Theory, Experiment, and Applications E. Barsoukov and J. R. Macdonald, Eds., Wiley-Interscience, 2005.
[47]周映傑,拋棄式奈米孔洞金銅合金電極之製備與應用,國立中興大學化學研究所碩士論文,102年7月[48]Chao Zhang et al. Graphene Oxide-Assisted Dispersion of Pristine Multiwalled Carbon Nanotubes in Aqueous Media. J. Phys. Chem. C 2010, 114, 11435–11440
[49]Xingfa Gao et al. Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. J. Phys. Chem. C 2010, 114, 832–842
[50]Takashi Uemura and Susumu Kitagawa, Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone) J. Am. Chem. Soc., 2003, 125 (26), pp 7814–7815
[51]Seunghee Wooa, Yang-Rae Kim, Taek Dong Chung, Yuanzhe Piao, Hasuck Kim. Electrochimica. Acta 59 (2012) 509– 514
[52]W. Qiu et al. Materials Science and Engineering C 72 (2017) 692–700
[53]G. Liang, L. Zheng, S. Bao, H. Gao, F. Zhu, Q. Wu, Graphene-induced tiny flowers of organometallic polymers with ultrathin petals for hydrogen peroxide sensing, Carbon, 93(2015) 719-30.
[54]J.-H. Yang, N. Myoung, H.-G. Hong, Facile and controllable synthesis of Prussian blue on chitosan-functionalized graphene nanosheets for the electrochemical detection of hydrogen peroxide, Electrochimica Acta, 81(2012) 37-43.
[55]L. Qian, R. Zheng, L. Zheng, Fabrication of Prussian blue nanocubes through reducing a single-source precursor with graphene oxide and their electrocatalytic activity for H2O2, Journal of Nanoparticle Research, 15(2013) 1806.
[56]Q. Rui, K. Komori, Y. Tian, H. Liu, Y. Luo, Y. Sakai, Electrochemical biosensor for the detection of H 2 O 2 from living cancer cells based on ZnO nanosheets, Analytica Chimica Acta, 670(2010) 57-62.
[57]S. Woo, Y.-R. Kim, T.D. Chung, Y. Piao, H. Kim, Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide, Electrochimica Acta, 59(2012) 509-14.
[58]X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, et al., One‐step electrochemical synthesis of graphene/polyaniline composite film and its applications, Advanced Functional Materials, 21(2011) 2989-96.
[59]J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics, 74(2015) 71-7.
[60]B. Patella, R. Inguanta, S. Piazza, C. Sunseri, A nanostructured sensor of hydrogen peroxide, Sensors and Actuators B: Chemical, 245(2017) 44-54.
[61]Y. Wu, F. Wang, K. Lu, M. Lv, Y. Zhao, Self-assembled dipeptide-graphene nanostructures onto an electrode surface for highly sensitive amperometric hydrogen peroxide biosensors, Sensors and Actuators B: Chemical, (2017).
[62]Y. Zhao, D. Huo, J. Bao, M. Yang, M. Chen, J. Hou, et al., Biosensor based on 3D graphene-supported Fe3O4 quantum dots as biomimetic enzyme for in situ detection of H2O2 released from living cells, Sensors and Actuators B: Chemical, (2017).
[63]P. Ahuja, S.K. Ujjain, R. Kanojia, MnO x/C nanocomposite: An insight on high-performance supercapacitor and non-enzymatic hydrogen peroxide detection, Applied Surface Science, 404(2017) 197-205
[64]Y. Shu, J. Chen, Q. Xu, Z. Wei, F. Liu, R. Lu, et al., MoS2 nanosheet–Au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells, Journal of Materials Chemistry B, 5(2017) 1446-53.
[65]H. Yang, Z. Wang, C. Li, C. Xu, Nanoporous PdCu alloy as an excellent electrochemical sensor for H2O2 and glucose detection, Journal of Colloid and Interface Science, 491(2017) 321-8.
[66]Y. Shu, B. Li, Q. Xu, P. Gu, X. Xiao, F. Liu, et al., Cube-like CoSn (OH) 6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample, Sensors and Actuators B: Chemical, 241(2017) 528-33.
[67]J.-H. Yang, N. Myoung, H.-G. Hong, Facile and controllable synthesis of Prussian blue on chitosan-functionalized graphene nanosheets for the electrochemical detection of hydrogen peroxide, Electrochimica Acta, 81(2012) 37-43.
[68]T. Wang, H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou, G. Lubarsky, et al., Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level, Analytical chemistry, 85(2013) 10289-95.
[69]R. Li, X. Liu, W. Qiu, M. Zhang, In vivo monitoring of H2O2 with polydopamine and prussian blue-coated microelectrode, Analytical chemistry, 88(2016) 7769-76.
[70]Mohiuddin M. Taher and N. Lakshmaiah, Hydroperoxide-Dependent Folic Acid Degradation by Cytochrome c, Journal of Inorganic Biochemistry 31, 133-141 (1987)
[71]Roy G. Cutler et al., The Role of Uric Acid and Methyl Derivatives in the Prevention of Age-Related Neurodegenerative Disorders, Current Topics in Medicinal Chemistry, 2015, 15, 2233-2238
[72]A.A. Karyakin, E.E. Karyakina, L. Gorton, Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide, Analytical chemistry, 72(2000) 1720-3.
[73]A.A. Karyakin, E.E. Karyakina, L. Gorton, On the mechanism of H2O2 reduction at Prussian Blue modified electrodes, Electrochemistry Communications, 1(1999) 78-82.
[74]P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells, Journal of Materials Chemistry, 22(2012) 6402-12.
[75]S.K. Maji, S. Sreejith, A.K. Mandal, X. Ma, Y. Zhao, Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing, ACS applied materials & interfaces, 6(2014) 13648-56.
[76]J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21(2006) 1887-92.
[77]A.P. Periasamy et al,. Preparation and characterization of bismuth oxide nanoparticles-multiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor, Talanta, 87(2011) 15-23.