跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家豪
研究生(外文):Chia-Hao Chang
論文名稱:評估數位即時聚合酶鏈鎖反應作為分子診斷工具並應用於單細胞分析
論文名稱(外文):Evaluation of digital real-time PCR assay as a molecular diagnostic tool for single-cell analysis
指導教授:楊台鴻
指導教授(外文):Tai-Horn Young
口試委員:陳晉興林宏殷味正唯洪智煌李亦淇
口試日期:2018-04-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:75
中文關鍵詞:數位即時聚合酶鏈鎖反應單細胞分析上皮間質轉化基因表現轉化生長因子-β
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在進行單細胞的研究過程中,分離出單細胞並且鑑定是不可或缺的步驟,但往往需付出大量的時間及金錢成本來達到此目的。本研究的目標在使用一個全新的平台系統,PanelChip™ Analysis System,建立方法使其能夠結合分離單細胞並收集的功能,同時完成單細胞基因圖譜鑑定;此系統包含微陣列晶片(2500格)與數位即時聚合酶鏈鎖反應平台的系統,與標準的即時聚合酶鏈鎖反應平台進行比較,以驗証數位即時聚合酶鏈鎖反應平台的效能展現。
在數位即時聚合酶鏈鎖反應平台系統與標準的即時聚合酶鏈鎖反應平台上進行標準品(pUC19)的連續稀釋實驗以驗証動態範圍及再現性。並在兩種平台使用兩種不同已知濃度的A549肺癌細胞樣本,測試其vimentin, E-cadherin, N-cadherin 與GAPDH的基因表現。更進一步的使用採血試管中常使用的抗擬血劑同時也是酶鏈鎖反應抑制劑-肝素(heparin),作為兩種不同平台系統對於酶鏈鎖反應抑制劑的耐受性評估及比較。最後,提出單細胞分散的數學模型並且驗證了單細胞的分離方法,並且再進一步地將A549肺癌細胞以藥物(TGFβ1)誘導使其進行上皮間質轉化後進行單細胞基因圖譜分析檢測。
經過上列實驗得出的結論是,使用Panel Chip™ Analysis System進行數位即時聚合酶鏈鎖反應,在濃度範圍3.4至3.4 x10^8copies/μL具有良好的線性關係(R^2=0.9974);並且不管是在2pg/μL樣品濃度( 變異系數1.97)或200pg/μL樣品濃度( 變異系數1.30),都小於標準qPCR在2pg/μL樣品濃度( 變異系數3.94)或200pg/μL樣品濃度( 變異系數8.11),代表著數位即時聚合酶鏈鎖反應方法的再現性優於傳統即時聚合酶鏈鎖反應方法;在酶抑制劑耐受性方面,數位即時聚合酶鏈鎖反應方法(IC50: 0.02IU/mL)亦大於標準即時聚合酶鏈鎖反應方法(IC50: 0.002IU/mL),代表即時聚合酶鏈鎖反應方法對於肝素的耐受性優於標準即時聚合酶鏈鎖反應方法。經由實驗驗証,可以使用PanelChip™ Analysis System快速得到高通量的單細胞基因表現圖譜(約1000 單細胞/晶片)。數位即時聚合酶鏈鎖反應在臨床診斷和單細胞應用上具有發展的潛力。
In a single-cell study, isolating and identifying single cells are essential, but these processes often require a large investment of time or money. The aim of this study was to isolate and analyse single cells using a novel platform, the PanelChip™ Analysis System, which includes 2500 microwells chip and a digital real-time polymerase chain reaction (dqPCR) assay, in comparison with a standard RT-PCR (qPCR) assay.
Through the serial dilution of a known concentration standard, namely pUC19, the accuracy and sensitivity levels of two methodologies were compared. The two systems were also tested on the basis of expression levels of the genetic markers vimentin, E-cadherin, N-cadherin and GAPDH in A549 lung carcinoma cells at two known concentrations. Furthermore, the influence of a known PCR inhibitor commonly found in blood samples, heparin, was evaluated in both methodologies.
Finally, mathematical models were proposed and separation method of single cells was verified; moreover, gene expression levels during epithelial–mesenchymal transition in single cells under TGFβ1 treatment were measured.
The drawn conclusion is that dqPCR performed using PanelChip™ has good linearity (R^2=0.9974) at 3.4 to 3.4 x 10^8 copies/μL, and it is superior to the standard qPCR in terms of, reproducibility (at 2pg/μL, dqPCR CV:1.97 < qPCR CV:3.94 ; at 200pg/μL , dqPCR CV:1.30 < qPCR CV:8.11) and heparin tolerance (dqPCR IC50: 0.02IU/mL > qPCR IC50: 0.002IU/mL). The dqPCR assay is a potential tool for clinical diagnosis and single-cell applications.
口試委員會審定書 I
致謝 II
摘要 III
ABSTRACT V
TABLE OF CONTENTS VII
LIST OF TABLES XI
LIST OF FIGURES XII
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Purposes 2
1.3. Experimental Design 3
CHAPTER 2 LITERATURE REVIEW 5
2.1.Precision Medicine 5
2.1.1. What is Precision Medicine ? 5
2.1.2. W1hy Precision Medicine Important ? 6
2.2. Tumor Metastasis 7
2.2.1. Metastasis 7
2.2.2. Circulating Tumor Cells, CTCs 8
2.2.3. Epithelial-Mesenchymal Transition, EMT 9
2.3. Single-Cell Study 10
2.3.1.Why Single-Cell Important ? 10
2.3.2. Single-Cell Isolation 11
2.3.3. Single-Cell Analysis Instrument on the Market 12
2.4. Digital PCR 13
CHAPTER 3 MATERIALS AND METHODS 15
3.1. Biomaterial Preparation 15
3.1.1. Cell Preparation 15
3.1.2.Isolation of A549 Total RNA 15
3.1.3. pUC19 Standard DNA and Primer Pairs 15
3.2. Amplification Methods 16
3.2.1.RT-qPCR and qPCR 16
3.2.2. RT-dqPCR and dqPCR 16
3.3. Linearity and Sensitivity 18
3.4. Precision and Repeatability 18
3.5. Inhibitor Resistance 19
3.6. Cellular Distribution Across Microwell chip 19
3.7. Gene Expression Profiling of Epithelial-Mesenchymal Transformation in Single-Cells 19
3.8. Data Analysis 20
3.8.1. Dynamic Range of dqPCR 20
3.8.2. Evaluation of the Inhibitory Influenece of Heparin 21
3.8.3. Cellular Distribution in a Chip 22
3.8.4. Single-Cell Gene Expression Profiling 24
CHAPTER 4 RESULTS 26
4.1. Performance of PanelChipTM Analysis System 26
4.1.1. Serial Dilution of pUC19 Plasmd DNA Standard 26
4.1.2. Precision and Repeatability 28
4.1.3. Inhibitor Resistance 29
4.2. Cell Distribution Across the 2500 Microwell Chip 31
4.2.1. Cell distribution at Various Input Numbers 31
4.2.2. Epithelial-Mesenchymal Gene Expression Profiling in Single-Cells 32
CHAPTER 5 DISCUSSIONS 34
5.1. Performance of PanelChipTM Analysis System 34
5.1.1 Measuring the Linear Dynamic Range of dqPCR and qPCR system 34
5.1.2 Evaluate the Reproducibility of dqPCR and qPCR system 35
5.1.3 Determine the Heparin Tolerance of dqPCR and qPCR system 36
5.2.Single-Cell Analysis using PanelChipTM Analysis System 38
5.2.1. Using the Poisson Distribution to Obtain Single-Cell 38
5.2.2. Single-Cell Gene Expression Profiling of A549 cell treated with TGFβ1 39
CHAPTER 6 CONCLUSIONS 40
REFERENCE 41
TABLES 47
FIGURES 51
[1] Siegiel R, Miller K, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7-30.
[2] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer. 2015;136:E359-E86.
[3] Keshamouni V, Arenberg D, Kalemkerian G. Lung Cancer Metastasis: Springer; 2009.
[4] Hong B, Zu Y. Detecting circulating tumor cells: current challenges and new trends. Theranostics. 2013;3:377-94.
[5] Hu P, Zhang W, Xin H, Deng G. Single Cell Isolation and Analysis. Frontiers in cell and developmental biology. 2016;4.
[6] Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC biotechnology. 2003;3:18.
[7] Wilkerson MD, Schallheim JM, Hayes DN, Roberts PJ, Bastien RR, Mullins M, et al. Prediction of lung cancer histological types by RT-qPCR gene expression in FFPE specimens. The Journal of Molecular Diagnostics. 2013;15:485-97.
[8] Phillips JK, Lipski J. Single-cell RT–PCR as a tool to study gene expression in central and peripheral autonomic neurones. Autonomic Neuroscience. 2000;86:1-12.
[9] Ståhlberg A, Kubista M, Åman P. Single-cell gene-expression profiling and its potential diagnostic applications. 2011.
[10] Ståhlberg A, Bengtsson M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods. 2010;50:282-8.
[11] Furutani S, Nagai H, Takamura Y, Aoyama Y, Kubo I. Detection of expressed gene in isolated single cells in microchambers by a novel hot cell-direct RT-PCR method. Analyst. 2012;137:2951-7.
[12] Furutani S, Nagai H, Takamura Y, Kubo I. Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell. Analytical and bioanalytical chemistry. 2010;398:2997-3004.
[13] Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry. 2009;55:611-22.
[14] Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, et al. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiotherapy and oncology. 2011;99:392-7.
[15] Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. Obstetrical & Gynecological Survey. 2015;70:612-4.
[16] Jørgensen JT, Hersom M. Companion diagnostics—a tool to improve pharmacotherapy. Annals of translational medicine. 2016;4.
[17] Nicholas SBD. Time for one-person trials. NATURE. 2015;520.
[18] Mukherjee D, Topol EJ. Pharmacogenomics in cardiovascular diseases. Progress in cardiovascular diseases. 2002;44:479-98.
[19] Yang C-Y, Dao R-L, Lee T-J, Lu C-W, Yang C-H, Hung S-I, et al. Severe cutaneous adverse reactions to antiepileptic drugs in Asians. Neurology. 2011:WNL. 0b013e31823b478c.
[20] Shah RR, Gaedigk A. Precision medicine: does ethnicity information complement genotype-based prescribing decisions? Therapeutic advances in drug safety. 2018;9:45-62.
[21] Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial‐mesenchymal transition in cancer metastasis through the lymphatic system. Molecular oncology. 2017.
[22] Faguet GB. A brief history of cancer: Age‐old milestones underlying our current knowledge database. International journal of cancer. 2015;136:2022-36.
[23] Rosen G, Tefft M, Martinez A, Cham W, Murphy ML. Combination chemotherapy and radiation therapy in the treatment of metastatic osteogenic sarcoma. Cancer. 1975;35:622-30.
[24] Park JH, Kim YJ, Lee J-O, Lee K-W, Kim JH, Bang S-M, et al. Clinical outcomes of leptomeningeal metastasis in patients with non-small cell lung cancer in the modern chemotherapy era. Lung Cancer. 2012;76:387-92.
[25] Weigelt B, Peterse JL, Van''t Veer LJ. Breast cancer metastasis: markers and models. Nature reviews cancer. 2005;5:591.
[26] Hunter KW, Crawford NP, Alsarraj J. Mechanisms of metastasis. Breast Cancer Research. 2008;10:S2.
[27] Tjensvoll K, Nordgård O, Smaaland R. Circulating tumor cells in pancreatic cancer patients: methods of detection and clinical implications. International Journal of Cancer. 2014;134:1-8.
[28] Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell research. 2009;19:156.
[29] Jiang YG, Luo Y, He Dl, Li X, Zhang Ll, Peng T, et al. Role of Wnt/β‐catenin signaling pathway in epithelial‐mesenchymal transition of human prostate cancer induced by hypoxia‐inducible factor‐1α. International Journal of Urology. 2007;14:1034-9.
[30] Holz C, Niehr F, Boyko M, Hristozova T, Distel L, Budach V, et al. Epithelial–mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiotherapy and oncology. 2011;101:158-64.
[31] Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC cancer. 2013;13:108.
[32] Liu C-Y, Lin H-H, Tang M-J, Wang Y-K. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015;6:15966.
[33] Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, et al. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clinical cancer research. 2004;10:4125-33.
[34] Myong N-H. Loss of E-cadherin and acquisition of vimentin in epithelial-mesenchymal transition are noble indicators of uterine cervix cancer progression. Korean journal of pathology. 2012;46:341.
[35] Wang M, Ren D, Guo W, Huang S, Wang Z, Li Q, et al. N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells. International journal of oncology. 2016;48:595-606.
[36] Rai H, Ahmed J. N-cadherin: a marker of epithelial to mesenchymal transition in tumor progression. The Internet Journal of Oncology. 2014;10:1-12.
[37] Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 2009;119:1420-8.
[38] Altschuler SJ, Wu LF. Cellular heterogeneity: do differences make a difference? Cell. 2010;141:559-63.
[39] Wills QF, Mead AJ. Application of single-cell genomics in cancer: promise and challenges. Human Molecular Genetics. 2015;24:R74-R84.
[40] Singel Cell Analysis. Thermo Fisher Scientific. 2018.
[41] Fröhlich J, König H. New techniques for isolation of single prokaryotic cells. FEMS Microbiology Reviews. 2000;24:567-72.
[42] Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, HERzENbERG LA. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clinical chemistry. 2002;48:1819-27.
[43] Welzel G, Seitz D, Schuster S. Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures. Scientific reports. 2015;5.
[44] Espina V, Heiby M, Pierobon M, Liotta LA. Laser capture microdissection technology. Expert review of molecular diagnostics. 2007;7:647-57.
[45] Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, et al. Microfluidic device for single-cell analysis. Analytical chemistry. 2003;75:3581-6.
[46] Marcus JS, Anderson WF, Quake SR. Microfluidic single-cell mRNA isolation and analysis. Analytical chemistry. 2006;78:3084-9.
[47] Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J. Microfluidic control of cell pairing and fusion. Nature methods. 2009;6:147-52.
[48] Aguirre GR, Efremov V, Kitsara M, Ducrée J. Integrated micromixer for incubation and separation of cancer cells on a centrifugal platform using inertial and dean forces. Microfluidics and Nanofluidics. 2015;18:513-26.
[49] Love KR, Bagh S, Choi J, Love JC. Microtools for single-cell analysis in biopharmaceutical development and manufacturing. Trends in biotechnology. 2013;31:280-6.
[50] Pieprzyk M, High H. Fluidigm Dynamic Arrays provide a platform for single-cell gene expression analysis. Nature Methods. 2009;6.
[51] Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics. 2013;14:618-30.
[52] Sykes P, Neoh S, Brisco M, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13:444-9.
[53] Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature methods. 2013;10:1003-5.
[54] Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA. Evaluation of digital PCR for absolute DNA quantification. Analytical chemistry. 2011;83:6474-84.
[55] Baker M. Digital PCR hits its stride. nature methods. 2012;9:541.
[56] Sedlak RH, Jerome KR. Viral diagnostics in the era of digital polymerase chain reaction. Diagnostic microbiology and infectious disease. 2013;75:1-4.
[57] Dube S, Qin J, Ramakrishnan R. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One. 2008;3:e2876.
[58] White RA, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. Journal of virological methods. 2012;179:45-50.
[59] Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clinical chemistry. 2013;59:1670-2.
[60] Rački N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant methods. 2014;10:42.
[61] Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomolecular Detection and Quantification. 2017.
[62] Yokoyama WM, Christensen M, Santos GD, Miller D, Ho J, Wu T, et al. Production of monoclonal antibodies. Current protocols in immunology. 2006:2.5. 1-2.5. 29.
[63] Shih-Ting Kang Y-SH, Chi-Ting Feng, Yu-Ting Chen, Pok Eric Yang, Wei-Ming Chen. miPrimer: An empirical-based qPCR primer design method for small non-coding microRNA. RNA. in press.
[64] Warren L, Bryder D, Weissman IL, Quake SR. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proceedings of the National Academy of Sciences. 2006;103:17807-12.
[65] Bengtsson M, Ståhlberg A, Rorsman P, Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome research. 2005;15:1388-92.
[66] Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical cancer research. 2007;13:7003-11.
[67] Li Y, Xu S, Li J, Han K, Pi H, Zheng L, et al. Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell death & disease. 2013;4:e831.
[68] Watanabe T, Miura T, Degawa Y, Fujita Y, Inoue M, Kawaguchi M, et al. Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR. Cancer cell international. 2010;10:1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top