跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:粘景涵
研究生(外文):Jing-HanNian
論文名稱:形狀記憶交聯型聚氨酯Vitrimers其製備與動態可逆性之研究
論文名稱(外文):Preparation and dynamic reversibility study of shape memory cross-linked polyurethane Vitrimers
指導教授:陳志勇陳志勇引用關係
指導教授(外文):Chuh-Yung Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:96
中文關鍵詞:vitrimers形狀記憶材料交聯聚氨酯
外文關鍵詞:vitrimersSMPUscrosslinked PU
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究將熱固性PU中引入動態可逆共價鍵,藉由羥基過量以及添加催化劑的方法,賦予熱固性PU再塑形的能力,並探討其動態可逆性和形狀記憶特性,接著合成具有高效動態可逆性的PUvitrimer彈性體,並探討其連續加工的可能性。首先,以本實驗室自行合成之聚碳酸酯型二元醇、丙三醇以及PAPI進行合成PU vitrimer,並藉由改變Polyol:Glycerol(1:3-1:9)來調控不同的軟硬鏈段比例,改變NCO%(60-100%)來調控在網絡中游離的過量羥基數,最後改變不同的DBTDL添加量(0-1.0wt%)來調控網絡中錫催化的比例,並藉由變溫FTIR觀察到錫催化之氨基甲酸酯官能基在高於170oC開始進行分解逆反應。透過增加硬鏈段比例、提高NCO%和減少DBTDL用量,將提升PU之Tg和交聯密度,並由應力鬆弛的結果顯示,在未添加催化劑的情況下,具有足夠羥基的PU vitrimers之動態可逆性主要受交聯密度所影響,隨著交聯密度降低,動態可逆性能則更加突出,且還能藉由添加DBTDL使其動態可逆性大幅增加。挑選Polyol:Glycerol為1:7、NCO%為70%且添加0.5wt%的PUvitrimer進行熱壓回復測試,經過三次回收的PU樣品仍能維持78%的楊氏模量以及斷裂強度,透過定性以及定量的形狀記憶與可塑性循環測試,此種PU vitirmer在三次循環後仍能保留86%以上的形狀固定以及回復率,且形狀記憶性以及可塑性並不互相影響。最後透過降低交聯密度以及添加催化劑,得到99%應力鬆弛只需50s的PU彈性體,並以毛細管流變儀進行擠出測試,當剪切速率低於30s-1,擠出狀態呈現連續且透明,且仍然維持一定的交聯密度,並未因高溫和剪切導致交聯網絡嚴重破裂。
In this research, dynamic reversible covalent bond was introduced into the thermosetting polyurethane to impart reprocessing ability by excess hydroxyl groups and catalyst addition. First, PU vitrimers was synthesized with polycarbonate polyol, glycerol and PAPI. Crosslinking density was changed by different ratios of soft and hard segments, extent of excess hydroxyl group in the network was controlled by different NCO%, and changing the amount of DBTDL added to regulate the proportion of tin catalysis in the network. The carbamate group starts the reverse reaction at higher than 170oC by temperature-dependent FTIR. The results of stress relaxation show that the dynamic reversibility of PU vitrimers with sufficient hydroxyl groups is mainly affected by the crosslink density and can be greatly increased by adding DBTDL. PU vitrimer is selected for hot press recovery test. The PU sample recovered after three times can still maintain 78% Young's modulus and tensile strength. Through shape memory and plasticity cycle, PU vitrimers can retain more than 86% shape fixity and recovery rate after three cycles. Finally, PU elastomer was synthesized with 99% stress relaxation for 53s and still maintains a certain crosslink density.
摘要 I
ABSTRACT II
總目錄 X
表目錄 XIII
圖目錄 XV
第一章 前言 1
第二章 文獻回顧 3
2.1 聚氨基甲酸酯(PU) 3
2.1.1 PU簡介與發展用途 3
2.1.2 PU反應 4
2.1.3 聚碳酸酯型多元醇 5
2.2 可逆共價鍵 7
2.2.1 可逆反應的熱力學與動力學 7
2.2.2 高分子流變特性 9
2.3 PU vitrimer 14
2.3.1 催化劑型vitrimer 14
2.3.2 立體取代型vitrimer 16
2.3.3 羥基改質型vitrimer 16
2.4 形狀記憶性高分子 17
2.4.1 熱敏感型SMP特性 17
2.4.2 形狀記憶機構 19
2.4.3 形狀記憶PU的分子設計 20
2.4.4 形狀記憶聚氨酯的應用 21
2.5 研究目的 23
第三章 實驗方法 24
3.1 實驗流程圖 24
3.2 實驗藥品 26
3.3 實驗設備與儀器 27
3.4 PU vitrimers製備 28
3.5 分析方法 29
3.5.1 官能基鑑定分析-Fourier-transform infrared spectroscopy 29
3.5.2 凝膠含量-Gel content test: 29
3.5.3 熱分析 29
3.5.4 流變性質分析 30
3.5.5 熱壓回復測試 32
3.5.6 形狀記憶與可塑性測試[24, 43] 33
3.5.7 毛細管流變擠出測試 34
第四章 結果與討論 35
4.1 PU vitrimer結構鑑定 35
4.1.1 PU分子結構設計與製備 35
4.1.2 凝膠含量分析 36
4.1.3 官能基鑑定 39
4.2 PU vitrimer熱性質分析 44
4.2.1 熱重分析 44
4.2.2 交聯結構熱轉變分析 49
4.3 PU vitrimer流變特性探討 57
4.3.1 軟硬鏈段比例對PU vitrimer流變特性影響探討 62
4.3.2 過量羥基對PU vitrimer流變特性影響探討 65
4.3.3 催化劑含量對PU vitrimer流變特性影響探討 68
4.3.4 交聯密度對應力鬆弛時間的影響 71
4.4 PU vitrimer回收性 73
4.5 PU vitrimer形狀記憶與可塑性 77
4.5.1 定性分析 77
4.5.2 定量分析 79
4.6 軟質PU vitrimer 82
4.6.1 熱性質分析 82
4.6.2 流變性質 85
4.6.3 熱壓回復測試 87
4.6.4 毛細管流變連續擠出測試 89
第五章 結論 92
參考文獻 93
1.Simon, D., et al., Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag, 2018. 76: p. 147-171.
2.Akindoyo, J.O., et al., Polyurethane types, synthesis and applications – a review. RSC Advances, 2016. 6(115): p. 114453-114482.
3.Yang, W., et al., Recycling and Disposal Methods for Polyurethane Foam Wastes. Procedia Environmental Sciences, 2012. 16: p. 167-175.
4.Simón, D., et al., Glycolysis of viscoelastic flexible polyurethane foam wastes. Polymer Degradation and Stability, 2015. 116: p. 23-35.
5.Montarnal, D., et al., Silica-like malleable materials from permanent organic networks. Science, 2011. 334(6058): p. 965-8.
6.Zheng, N., et al., Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angewandte Chemie International Edition, 2016. 55(38): p. 11421-11425.
7.Denissen, W., et al., Vinylogous Urethane Vitrimers. Advanced Functional Materials, 2015. 25(16): p. 2451-2457.
8.Obadia, M.M., et al., Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds. J Am Chem Soc, 2015. 137(18): p. 6078-83.
9.Lu, Y.X. and Z. Guan, Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds. J Am Chem Soc, 2012. 134(34): p. 14226-31.
10.Fortman, D.J., et al., Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J Am Chem Soc, 2015. 137(44): p. 14019-22.
11.Ryszkowska, J. and B. Wasniewski, Quantitative description of the morphology of polyurethane nanocomposites for medical applications. Vol. 72. 2011. 377-386.
12.劉益軍, 聚胺酯樹酯及其應用. 2011: 化學工業出版社.
13.郭政柏, 聚碳酸酯二醇聚合技術及其應用. 工業材料雜誌, 2017(365).
14.Zhang, Z.P., M.Z. Rong, and M.Q. Zhang, Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Progress in Polymer Science, 2018. 80: p. 39-93.
15.Gasparini, G., et al., Dynamic covalent chemistry. Supramolecular Chemistry: From Molecules to Nanomaterials, 2012: p. 1497-1526.
16.Williams, M.L., R.F. Landel, and J.D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, 1955. 77(14): p. 3701-3707.
17.Gandini, A., The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science, 2013. 38(1): p. 1-29.
18.Adzima, B.J., et al., Rheological and Chemical Analysis of Reverse Gelation in a Covalently Cross-Linked Diels−Alder Polymer Network. Macromolecules, 2008. 41(23): p. 9112-9117.
19.Rottger, M., et al., High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017. 356(6333): p. 62-65.
20.Denissen, W., J.M. Winne, and F.E. Du Prez, Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci, 2016. 7(1): p. 30-38.
21.Simón, D., et al., Flexible polyurethane foams synthesized employing recovered polyols from glycolysis: Physical and structural properties. Journal of Applied Polymer Science, 2017. 134(32).
22.Chattopadhyay, D.K. and D.C. Webster, Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 2009. 34(10): p. 1068-1133.
23.Schneiderman, D.K., et al., Chemically Recyclable Biobased Polyurethanes. ACS Macro Letters, 2016. 5(4): p. 515-518.
24.Wang, Y., et al., Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds. Macromol Rapid Commun, 2018. 39(10): p. e1800128.
25.Yan, P., et al., Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding. RSC Advances, 2017. 7(43): p. 26858-26866.
26.Yan, P., et al., Carbon Nanotubes-Polyurethane Vitrimer Nanocomposites with the Ability of Surface Welding Controlled by Heat and Near-Infrared Light. Macromolecular Chemistry and Physics, 2017. 218(20).
27.Ying, H., Y. Zhang, and J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nature Communications, 2014. 5: p. 3218.
28.Zhang, L. and S.J. Rowan, Effect of Sterics and Degree of Cross-Linking on the Mechanical Properties of Dynamic Poly(alkylurea–urethane) Networks. Macromolecules, 2017. 50(13): p. 5051-5060.
29.Meng, H. and J. Hu, A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli. Vol. 21. 2010. 859-885.
30.Thakur, S. and N. Karak, Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Advances, 2013. 3(24): p. 9476-9482.
31.Thakur, S. and N. Karak, A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New Journal of Chemistry, 2015. 39(3): p. 2146-2154.
32.Thakur, S. and J. Hu, Polyurethane: A Shape Memory Polymer (SMP), in Aspects of Polyurethanes. 2017.
33.Yao, Y., et al., Styrene-based shape memory foam: fabrication and mathematical modeling. Smart Materials and Structures, 2016. 25(10): p. 105031.
34.Smet, C.d. Marcus Fairs Memories of the Future. 2012; Available from: https://www.dezeen.com/2012/10/25/noumenon-by-carl-de-smet/.
35.Small, I.V.W., et al., Biomedical applications of thermally activated shape memory polymers. Journal of Materials Chemistry, 2010. 20(17): p. 3356-3366.
36.Ping, P., et al., Shape-memory and biocompatibility properties of segmented polyurethanes based on poly(L-lactide). Frontiers of Chemistry in China, 2007. 2(4): p. 331-336.
37.Neuss, S., et al., The use of a shape-memory poly(ε-caprolactone)dimethacrylate network as a tissue engineering scaffold. Biomaterials, 2009. 30(9): p. 1697-1705.
38.Hu J, L.J., Handbook of Smart Textiles. 1st ed. 2015: Singapore: Springer Science.
39.Liu, Y., et al., Shape memory polymers and their composites in aerospace applications: a review. Smart Materials and Structures, 2014. 23(2): p. 023001.
40.Sekkar, V., et al., Evaluation by various experimental approaches of the crosslink density of urethane networks based on hydroxyl‐terminated polybutadiene. Vol. 103. 2007. 3129-3133.
41.Brutman, J.P., P.A. Delgado, and M.A. Hillmyer, Polylactide Vitrimers. ACS Macro Letters, 2014. 3(7): p. 607-610.
42.Pritchard, R., et al., Vitrification and plastic flow in transient elastomer networks. Vol. 95. 2016.
43.Zheng, N., et al., Catalyst-Free Thermoset Polyurethane with Permanent Shape Reconfigurability and Highly Tunable Triple-Shape Memory Performance. ACS Macro Letters, 2017. 6(4): p. 326-330.
44.Saxena, N., et al., Synthesis, characterization, physical and thermodynamic properties of a novel anionic surfactant derived from Sapindus laurifolius. RSC Advances, 2018. 8(43): p. 24485-24499.
45.Ghaderian, A., et al., Characterization of Rigid Polyurethane Foam Prepared from Recycling of PET Waste. Periodica Polytechnica Chemical Engineering, 2015. 59(4): p. 296-305.
46.Campos, E., et al., Design and characterization of bi-soft segmented polyurethane microparticles for biomedical application. Colloids Surf B Biointerfaces, 2011. 88(1): p. 477-82.
47.Zhang, K., et al., Non-Isocyanate Poly(amide-hydroxyurethane)s from Sustainable Resources. Vol. 18. 2016.
48.Xu, K., et al., Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties. J. Mater. Chem. A, 2014. 2(22): p. 8545-8556.
49.Wang, T.A.W.K.K.H., Futures in Mechanics of Structures and Materials. 2008 Toowoomba. 914.
50.Hagen, R., L. Salmén, and B. Stenberg, Effects of the type of crosslink on viscoelastic properties of natural rubber. Journal of Polymer Science Part B: Polymer Physics, 1996. 34(12): p. 1997-2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top