|
1.Simon, D., et al., Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag, 2018. 76: p. 147-171. 2.Akindoyo, J.O., et al., Polyurethane types, synthesis and applications – a review. RSC Advances, 2016. 6(115): p. 114453-114482. 3.Yang, W., et al., Recycling and Disposal Methods for Polyurethane Foam Wastes. Procedia Environmental Sciences, 2012. 16: p. 167-175. 4.Simón, D., et al., Glycolysis of viscoelastic flexible polyurethane foam wastes. Polymer Degradation and Stability, 2015. 116: p. 23-35. 5.Montarnal, D., et al., Silica-like malleable materials from permanent organic networks. Science, 2011. 334(6058): p. 965-8. 6.Zheng, N., et al., Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angewandte Chemie International Edition, 2016. 55(38): p. 11421-11425. 7.Denissen, W., et al., Vinylogous Urethane Vitrimers. Advanced Functional Materials, 2015. 25(16): p. 2451-2457. 8.Obadia, M.M., et al., Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds. J Am Chem Soc, 2015. 137(18): p. 6078-83. 9.Lu, Y.X. and Z. Guan, Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds. J Am Chem Soc, 2012. 134(34): p. 14226-31. 10.Fortman, D.J., et al., Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J Am Chem Soc, 2015. 137(44): p. 14019-22. 11.Ryszkowska, J. and B. Wasniewski, Quantitative description of the morphology of polyurethane nanocomposites for medical applications. Vol. 72. 2011. 377-386. 12.劉益軍, 聚胺酯樹酯及其應用. 2011: 化學工業出版社. 13.郭政柏, 聚碳酸酯二醇聚合技術及其應用. 工業材料雜誌, 2017(365). 14.Zhang, Z.P., M.Z. Rong, and M.Q. Zhang, Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Progress in Polymer Science, 2018. 80: p. 39-93. 15.Gasparini, G., et al., Dynamic covalent chemistry. Supramolecular Chemistry: From Molecules to Nanomaterials, 2012: p. 1497-1526. 16.Williams, M.L., R.F. Landel, and J.D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, 1955. 77(14): p. 3701-3707. 17.Gandini, A., The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science, 2013. 38(1): p. 1-29. 18.Adzima, B.J., et al., Rheological and Chemical Analysis of Reverse Gelation in a Covalently Cross-Linked Diels−Alder Polymer Network. Macromolecules, 2008. 41(23): p. 9112-9117. 19.Rottger, M., et al., High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017. 356(6333): p. 62-65. 20.Denissen, W., J.M. Winne, and F.E. Du Prez, Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci, 2016. 7(1): p. 30-38. 21.Simón, D., et al., Flexible polyurethane foams synthesized employing recovered polyols from glycolysis: Physical and structural properties. Journal of Applied Polymer Science, 2017. 134(32). 22.Chattopadhyay, D.K. and D.C. Webster, Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 2009. 34(10): p. 1068-1133. 23.Schneiderman, D.K., et al., Chemically Recyclable Biobased Polyurethanes. ACS Macro Letters, 2016. 5(4): p. 515-518. 24.Wang, Y., et al., Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds. Macromol Rapid Commun, 2018. 39(10): p. e1800128. 25.Yan, P., et al., Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding. RSC Advances, 2017. 7(43): p. 26858-26866. 26.Yan, P., et al., Carbon Nanotubes-Polyurethane Vitrimer Nanocomposites with the Ability of Surface Welding Controlled by Heat and Near-Infrared Light. Macromolecular Chemistry and Physics, 2017. 218(20). 27.Ying, H., Y. Zhang, and J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nature Communications, 2014. 5: p. 3218. 28.Zhang, L. and S.J. Rowan, Effect of Sterics and Degree of Cross-Linking on the Mechanical Properties of Dynamic Poly(alkylurea–urethane) Networks. Macromolecules, 2017. 50(13): p. 5051-5060. 29.Meng, H. and J. Hu, A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli. Vol. 21. 2010. 859-885. 30.Thakur, S. and N. Karak, Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Advances, 2013. 3(24): p. 9476-9482. 31.Thakur, S. and N. Karak, A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New Journal of Chemistry, 2015. 39(3): p. 2146-2154. 32.Thakur, S. and J. Hu, Polyurethane: A Shape Memory Polymer (SMP), in Aspects of Polyurethanes. 2017. 33.Yao, Y., et al., Styrene-based shape memory foam: fabrication and mathematical modeling. Smart Materials and Structures, 2016. 25(10): p. 105031. 34.Smet, C.d. Marcus Fairs Memories of the Future. 2012; Available from: https://www.dezeen.com/2012/10/25/noumenon-by-carl-de-smet/. 35.Small, I.V.W., et al., Biomedical applications of thermally activated shape memory polymers. Journal of Materials Chemistry, 2010. 20(17): p. 3356-3366. 36.Ping, P., et al., Shape-memory and biocompatibility properties of segmented polyurethanes based on poly(L-lactide). Frontiers of Chemistry in China, 2007. 2(4): p. 331-336. 37.Neuss, S., et al., The use of a shape-memory poly(ε-caprolactone)dimethacrylate network as a tissue engineering scaffold. Biomaterials, 2009. 30(9): p. 1697-1705. 38.Hu J, L.J., Handbook of Smart Textiles. 1st ed. 2015: Singapore: Springer Science. 39.Liu, Y., et al., Shape memory polymers and their composites in aerospace applications: a review. Smart Materials and Structures, 2014. 23(2): p. 023001. 40.Sekkar, V., et al., Evaluation by various experimental approaches of the crosslink density of urethane networks based on hydroxyl‐terminated polybutadiene. Vol. 103. 2007. 3129-3133. 41.Brutman, J.P., P.A. Delgado, and M.A. Hillmyer, Polylactide Vitrimers. ACS Macro Letters, 2014. 3(7): p. 607-610. 42.Pritchard, R., et al., Vitrification and plastic flow in transient elastomer networks. Vol. 95. 2016. 43.Zheng, N., et al., Catalyst-Free Thermoset Polyurethane with Permanent Shape Reconfigurability and Highly Tunable Triple-Shape Memory Performance. ACS Macro Letters, 2017. 6(4): p. 326-330. 44.Saxena, N., et al., Synthesis, characterization, physical and thermodynamic properties of a novel anionic surfactant derived from Sapindus laurifolius. RSC Advances, 2018. 8(43): p. 24485-24499. 45.Ghaderian, A., et al., Characterization of Rigid Polyurethane Foam Prepared from Recycling of PET Waste. Periodica Polytechnica Chemical Engineering, 2015. 59(4): p. 296-305. 46.Campos, E., et al., Design and characterization of bi-soft segmented polyurethane microparticles for biomedical application. Colloids Surf B Biointerfaces, 2011. 88(1): p. 477-82. 47.Zhang, K., et al., Non-Isocyanate Poly(amide-hydroxyurethane)s from Sustainable Resources. Vol. 18. 2016. 48.Xu, K., et al., Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties. J. Mater. Chem. A, 2014. 2(22): p. 8545-8556. 49.Wang, T.A.W.K.K.H., Futures in Mechanics of Structures and Materials. 2008 Toowoomba. 914. 50.Hagen, R., L. Salmén, and B. Stenberg, Effects of the type of crosslink on viscoelastic properties of natural rubber. Journal of Polymer Science Part B: Polymer Physics, 1996. 34(12): p. 1997-2006.
|