跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周秀鳳
研究生(外文):CHOU,HSIU-FENG
論文名稱:高能增塑劑1,2,4-丁三醇三硝酸酯(BTTN)合成之理論計算研究
論文名稱(外文):Theoretical Calculation of the Synthesis of a High Energy Plasticizer 1,2,4–Butanetriol Trinitrate(BTTN)
指導教授:劉敏憲
指導教授(外文):LIU,MIN-HSIEN
口試委員:何子萬洪耀勳蔡厚仁鄭根發
口試委員(外文):HO,TZU-WANHUNG,YUEH-HSUNTSAI,HOU-JENCHENG,KEN-FA
口試日期:2017-05-12
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:59
中文關鍵詞:高能物質1,2,4-丁三醇三硝酸酯增塑劑1,2,4-丁三醇前驅物化學合成法
外文關鍵詞:high energy maerials1,2,4-butanetriol trinitratplasticizerprecursor 1,2,4-butanetriolchemical synthesis method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
開發新穎兼具優異性能及鈍感特性的高能物質(High Energy Materials, HEMs),近年來已成為新的軍事運用發展趨勢。1,2,4-丁三醇三硝酸酯(1,2,4-butanetriol trinitrate, BTTN)因顯現優於硝化甘油(Nitroglycerine, NG)的重要潛質,逐漸被選用為高能推進劑的增塑劑(Plasticizer)成分。然而,受限於BTTN前驅物1,2,4-丁三醇(1,2,4-butanetriol, BT)原料獲得不易,吸引許多研究者投入以生物技術法合成BT。本研究將以理論模擬及實驗的方法,探討化合物1,2,4-丁三醇的化學合成。研究的進行,將採經評估可行而建立之二系列製備方法,分為:(1)羥醛縮合製備法;(2)3-丁烯-1,2-二醇的環氧化製備法。旨在研提改良式的化學合成方法,以獲取高產率的目標產物。
The quest for novel high energy maerials(HEMs)with highest performance and
low sensitivity has led to the newly development of powerful explosives in military application. 1,2,4-butanetriol trinitrat(BTTN), with superior latent trait to NG, is emerging as a potential candidate for its use as plasticizer ingredient in insensitive high energetic propellant. However, limited by the difficuly to obtain BTTN precursor 1,2,4-butanetriol(BT), it has attracted many researchers to get into BT synthesis using biological techniques. This research will apply both theoretical simulation and experimental methods to discuss the chemical synthesis of BT. Two series of synthesis methods are proposed as:(1)The BT preparation via aldol condensation reaction.(2)The epoxidation of 3-butene-1,2-diol.The aim of this work is to explore improved synthesis methods for obtaining high yield of the target BT product.
誌謝 ............................................................................................................................... ii
摘要 .............................................................................................................................. iii
ABSTRACT ................................................................................................................. iv
目錄 ................................................................................................................................ v
表目錄 ......................................................................................................................... vii
圖目錄 ........................................................................................................................ viii
1. 緒論 ........................................................................................................................ 1
1.1 研究動機 ............................................................................................................ 1
1.2 研究目的 ............................................................................................................ 2
1.3 研究背景 ............................................................................................................ 3
1.4 研究架構 ............................................................................................................ 7
2. 研究方法 ................................................................................................................ 8
2.1 分子系統優選及能量計算 ................................................................................ 8
2.2 反應機構建立與過渡態物種模擬 .................................................................... 8
2.3 液相溶液模擬與能量 ...................................................................................... 10
2.4 熱力學帄衡常數與動力學參數之獲得 .......................................................... 11
3. 結果與討論 .......................................................................................................... 12
3.1 計算方法的可靠性 .......................................................................................... 12
3.2 反應合成的比較分析 ...................................................................................... 20
3.3 溫度與試液濃度對反應的影響 ...................................................................... 27
3.4 產率的提升 ...................................................................................................... 31
4. 結論 ..................................................................................................................... 37
參考文獻 .................................................................................................................. 39
附錄 .......................................................................................................................... 44
自傳 .......................................................................................................................... 50
[1] 余鳳兒,“組合雙基推進劑研製”,新新季刊,第35卷,第4期,第115-126頁,2007。
[2] Comfort, T. F., “Cross-linked double base propellant having improved low temperature mechanical properties”, US Patent No. 4659402 A, 1987.
[3] Gibson, J. D., “Stabilizers for cross-linked composite modified double base propellant ,”US Patent No. 5387295 A, 1995.
[4] Gouranlou, F., and Kohsary, I., “Synthesis and Characterization of 1,2,4-Butane-trioltrinitrate ,” Asian Journal of Chemistry, Vol. 22, No. 6, pp. 4221-4228, 2010.
[5] Folly, P., and Mader, P., “Propellant Chemistry ,” Chimia, Vol. 58, No. 6, pp. 374-382, 2004.
[6] Neidert, J. B., and Askins, R. E., “Castable double base propellant containing ultra fine carbon fiber as a ballistic modifier ,” US Patent No. 5372664 A, 1994.
[7] Neidert, J. B., and Williams, E. M., “Castable double base solid rocket propellant containing ballistic modifier pasted in an inert polymer ,” US Patent No. 6024810 A, 2000.
[8] Martins, L. M., Cragun, R. B., Lund G. K., Wells, M. V., and Mancini, V. E., “Method of making multi-base propellants from pelletized nitrocellulose,” US Patent No. 6692655 B1, 2004.
[9] Chan, M. L., and Turner, A. D., “Minimum signature propellant,” US Patent No. 6863751 B1, 2005.
[10] Saffron, C., and Frost, J. W., “ Large Scale Green Synthesis of 1,2,4-Butanetriol ,” Final Technical Report for the Period, Office of Naval Research Grant No. N00014-04-1-0207, 2007.
[11] Alley, B. J. et al., "Relationship of Impurities in Butanetriol Trinitrate (BTTN) and Its Precursors Butanetriol (BT) to Propellant Thermal Stability", CPIA Publication , Vol.455, pp. 661-671, 1986.
[12] Li, X., Cai, Z., Li, Y., and Zhang, Y., “Design and Construction of a Non-Natural Malate to 1,2,4-Butanetriol Pathway Creates Possibility to Produce 1,2,4- Butanetriol from Glucose,” Scientific Report, Vol.4, pp. 554-1-9, 2014.
[13] Valdehuesa, K. N. G., Liu, H., Ramos, K. R. M., Park, S. J., Nisola, G. M., Lee, W. K., and Chung, W. J., “ Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli,” Process Biochemistry, Vol. 49, pp. 25-32, 2014.
[14] Niu, W., Molefe, M. N., and Frost, J. W., “Microbial Synthesis of the Energetic Material Precursor 1,2,4-Butanetriol,” Journal of the American Chemical Society, Vol. 125, pp. 12998-2999, 2003.
[15] Abdel-Ghany, S. E., Day, I., Heuberger, A. L., Broeckling, C. D., and Reddy, A. S. N., “Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes,” Metabolic Engineering, Vol. 20, pp. 109-120, 2013.
[16] Frost, J. W., and Okemos, MI., “Synthesis of 1,2,4-Butanetriol enantiomers from carbohydrates,” US Patent No. 20110165641 A1, 2011.
[17] Frost, J. W., “Green syntheis of D-l,2,4-Butantetroil from D-Glucose,” CN Patent No. 200780032753.9, 2007.
[18] Yamada-Onodera, K., Norimoto, A., Kawada, N., Furuya, R., Yamamoto, H., and Tani, Y., “ Production of optically active 1,2,4-Butanetriol from corresponding racemate by microbial stereoinversion,” Journal of bioscience and bioengineering, Vol. 103, No. 5, pp. 494-496, 2007.
[19] Sarfate, et al., “Development of Low-Cost Manufacturing Process For 1,2,4-Butanetriol (BT),” Creative Applied Technical System, Inc, Contract No. N00174-01-0025, Final Technical Report 2001.
[20] Cao, Y., Niu, W., Guo, J., Xian, M., and Liu H., “Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass,” Scientific Report,Vol. 5, pp. 18149-1-9, 2015.
[21] Sun, L., Yang, F., Sun, H., Zhu, T., Li, X., Li, Y., Xu, Z., and Zhang, Y., “Synthetic pathway optimization for improved 1,2,4-butanetriol production,” Journal of Industrial Microbiology and Biotechnology, Vol. 43, pp. 67-78, 2016.
[22] Eggersdorfer, M., Mueller, H., Pohl, H. H., and Siegel, H., “Verfahren zur Herstellung von 1,2,4-Butantriol ,” Germany Patent EP No. 0297444 A3, 1989.
[23] Montes, M. J., Shawfield, D., and Bailai, M., “Process for preparation of butane triols,”CN Patent No. 1101368 C, 2003.
[24] Zhang, H., Zhu, C., Cheng, H. X., and Luo.Y. P., “Method for preparing 1,2,4-butanetriol,”CN Patent No. 101696157 A, 2010.
[25] Zhang, X., Wang, X., Shanmugam, K. T., and Ingram, L. O., “l-Malate Production by Metabolically Engineered Escherichia coli,” Applied and Environmental Microbiology, Vol. 77, No.2, pp. 427-434, 2011.
[26] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J. Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima,T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski J., and Fox, D. J., Gaussian 09W, Revision A. 02, Gaussian, Inc., Wallingford CT, 2009.
[27] Lee, C., Yang, W., Parr, and R. G., “Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, Vol. 37, pp. 785-789, 1988.
[28] Brooks, B. R., and Schaefer, H. F., “The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications,” The Journal of Chemical Physics, Vol. 70, pp. 5092-5106, 1979.
[29] Rooks, B.B.R., Laidig, W. D., Saxe, P., and Shaefer, H. F., “ A multiconfiguration selfconsistentfield formalism utilizing the twoparticle density matrix and the unitary group approach,” The Journal of Chemical Physics, Vol. 72, pp. 3837-3838 , 1980.
[30] Peng, C., and Schlegel, H. B., “Combining Synchronous Transit and Quasi- Newton Methods to Find Transition States,” Israe Journa of Chemistry, Vol. 33, pp. 449-454, 1993.
[31] Peng, C., Ayala, P.Y., Schlegel, H. B., and Frisch, M. J., “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” Journal of Computational Chemistry, Vol. 17, No.1, pp. 49-56, 1996.
[32] Miertus, S., Scrocco, E., and Tomasi, J., “Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects,” Chemical Physics, Vol. 55, pp. 117-129, 1981.
[33] Tomasi, J., Mennucci, B., and Cances, E., “The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level,” Journal of Molecular Structure (Theochem), Vol. 464, pp. 211-226, 1999.
[34] Accelrys Software Inc., Discovery Studio Modeling Environment, Release 6.0, San Diego: Accelrys Software Inc., 2007.
[35] Ishida, K., Morokuma, K., and Komornicki, A., “The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H−+CH4→CH4+H−,” The Journal of Chemical Physics, Vol. 66, pp. 2153-2156, 1977.
[36] Gonzalez, C., and Schlegel, H. B., “An improved algorithm for reaction path following,” The Journal of Chemical Physics, Vol. 90, pp. 2154-2161, 1989.
[37] Liu, M. H., Chen, C., Liu, C. W., and Hong , Y. S., “Theoretical Study on Thermodynamic Properties of C1-C16 Alkanes: A 3-Parameter Least-Squared Calibration,” Journal of Physical Chemistry A, Vol. 108, pp. 6784-6787, 2004.
[38] Cai, Z., and Wang M., “One-step synthesis of (S)-l , 2, 4-butanetriol via (S)-3- hydroxy-γ-butyrolactone,” Journal of hefeiuniversity of technology, Vo1. 33, No. 6, pp. 915-917, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top