跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/04 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方昱富
研究生(外文):Yu-Fu Fang
論文名稱:高溫下番茄花粉數量及花粉活性之數量性狀基因座定位以及轉錄體分析
論文名稱(外文):QTL Mapping of Total Pollen Number and Pollen Viability and Expression Profiling Analysis under Moderate Heat Stress in Tomato
指導教授:陳凱儀
指導教授(外文):Kai-Yi Chen
口試委員:胡凱康董致韡蔡育彰
口試委員(外文):Kae-Kang HwuChih-Wei TungYu-Chang Tsai
口試日期:2018-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:番茄高溫花粉數量性狀基因座轉錄體分析
相關次數:
  • 被引用被引用:1
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
番茄生長於高溫環境下,結果率會大幅度降低造成產量大幅下降。其中,花粉數量以及花粉活性為影響結果率之重要因子。本篇研究中使用親本為不耐熱品系 CA4 以及耐熱品系 CLN1621N 所建立之重組自交族群,共包含78個重組自交系,調查此族群於高溫逆境下 (日夜溫 30/25 度) 之花粉數量以及花粉活性。外表型資料顯示,此兩性狀與日照強度有明顯負相關,且兩性狀的廣義遺傳率介於0.3到0.6之間。為了瞭解於高溫下調控此兩性狀之遺傳因子,我們使用次世代核酸定序技術,以數量性狀基因座定位與基因表現量剖析 (即轉錄體) 兩種策略進行研究。單核苷酸分子標記的發掘來自重組自交族群的轉錄體定序資料。我們共獲得 7,550 個單核苷酸分子標記,用以建立高密度連鎖圖譜,其長度為 693.8 cM。數量性狀基因座定位分析共發現五個於高溫下調控花粉數量或活性之數量性狀基因座,分別位於第3、4、10以及11號染色體上,各別基因座可解釋的外表型變異介於 8.74% 到 34.63% 之間。此外,位於第4號染色體上影響花粉總數變異的數量性狀基因座內,14個基因之表現量高低與此染色體區間內分子標記之基因型具有統計意義上的顯著相關性。這些基因為高溫下維持花粉數量之候選基因。
High temperature reduces the fruit set rate of tomato, so does the yield. The total pollen number and the pollen viability were recognized as two major factors involving in the reduction of the fruit set rate. In this study, we measured these two traits of heat-sensitive variety CA4, heat-tolerant variety CLN1621N and their offspring population, 78 F7 recombinant inbred lines (RIL), under 30/25 °C day/night temperature. The results showed these two traits were highly correlated to the light intensity and their broad-sense heritability were from 0.3 to 0.6. In order to understand the genetic architectures of total pollen number and pollen viability under heat stress, we deployed two strategies, genetic mapping and gene expression profiling (ie. transcriptome), using next-generation sequencing technologies. The RNAseq gene profiling data of the RIL population were used to discover single nucleotide polymorphism (SNP) markers. A total of 7,550 SNP markers were identified in this RIL population to construct the high-density genetic map which was consisted of 330 SNP markers with 693.8 cM length. The genetic mapping analyses revealed five quantitative trait loci (QTLs) on chromosome 3, 4, 10 and 11. Each QTL can explain 8.74 % to 34.63% of total variance. In addition, the variation of gene expression of 14 genes in the QTL of the total pollen number on chromosome 4 showed statistically significant association with distinct marker genotypes of this QTL. These 14 genes are the candidate genes to maintain total pollen number under heat stress.
口試委員會審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 VIII
第一章 前言 1
第二章 材料與方法 4
2.1. 番茄試驗族群及種子處理 4
2.2. 種植方式及病蟲害管理 4
2.3. 熱處理方式及處理時間 5
2.4. 花粉數量和花粉活性之取樣及測量 5
2.5. 日照強度 6
2.6. 影像處理 7
2.7. 統計分析及繪圖 10
2.8. RNA-seq定序資料分析 10
2.9. 遺傳圖譜建立及數量性狀基因座定位 12
2.10. RNA-seq之基因表現量計算以及標準化 13
2.11. 基因表達數量性狀基因座定位 13
第三章 結果 15
3.1. 花粉活性及數量 15
3.2. RNA-seq定序資料分析及單核苷酸多型性變異辨認 27
3.3. 遺傳圖譜 30
3.4. 數量性狀基因座定位 37
3.5. 基因表達數量性狀基因座 42
第四章 討論 50
4.1. 高溫處理下不同批次間外表型差異 50
4.2. 花粉數量以及活性之遺傳率以及相關性 52
4.3. 遺傳圖譜結果與比較 53
4.4. 數量性狀基因座定位結果 54
4.5. 番茄花苞轉錄體表現量及基因表達數量性狀基因座定位 58
第五章 結論 61
參考文獻 62
附錄 69
Akagi, H., Nakamura, A., Yokozeki-Misono, Y., Inagaki, A., Takahashi, H., Mori, K., and Fujimura, T. (2004). Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theoretical and Applied Genetics 108, 1449-1457.
Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., and Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research 98, 541-550.
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389-3402.
An, F., Zhao, Q., Ji, Y., Li, W., Jiang, Z., Yu, X., Zhang, C., Han, Y., He, W., Liu, Y., Zhang, S., Ecker, J.R., and Guo, H. (2010). Ethylene-Induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 7, 2384-2401.
Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annual Review of Plant Biology 65, 415-442.
Bita, C.E., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4, 273.
Bita, C.E., Zenoni, S., Vriezen, W.H., Mariani, C., Pezzotti, M., and Gerats, T. (2011). Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics 12, 384.
Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
Bonferroni, C.E. (1936). Teoria statistica delle classi e calcolo delle probabilit. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3-62.
Broman, K.W., Wu, H., Sen, S., and Churchill, G.A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889-890.
Brukhin, V., Hernould, M., Gonzalez, N., Chevalier, C., and Mouras, A. (2003). Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex Plant Reprod 15, 311-320.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421-421.
Changrong, Y., A., A.M., D., R.E., N., S.S., A., L.M., J., D.C., Youngjun, M., J., T.M., Joonghyoun, C., B., D.C., Q., D.G., and E., H.J. (2012). Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding 131, 33-41.
Dane, F., Hunter, A.G., and Chambliss, O.L. (1991). Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high-temperature field conditions. Journal of the American Society for Horticultural Science 116, 906-910.
Desloire, S., Gherbi, H., Laloui, W., Marhadour, S., Clouet, V., Cattolico, L., Falentin, C., Giancola, S., Renard, M., Budar, F., Small, I., Caboche, M., Delourme, R., and Bendahmane, A. (2003). Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Reports 4, 588-594.
Din, J.U., Khan, S.U., Khan, A., Qayyum, A., Abbasi, K.S., and Jenks, M.A. (2016). Evaluation of potential morpho-physiological and biochemical indicators in selecting heat-tolerant tomato (Solanum lycopersicum Mill.) genotypes. Horticulture, Environment, and Biotechnology 56, 769-776.
Fernandez-Pozo, N., Menda, N., Edwards, J.D., Saha, S., Tecle, I.Y., Strickler, S.R., Bombarely, A., Fisher-York, T., Pujar, A., Foerster, H., Yan, A., and Mueller, L.A. (2015). The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research 43, 1036-1041.
Ferreira, A., Silva, M.F.d., Silva, L.d.C.e., and Cruz, C.D. (2006). Estimating the effects of population size and type on the accuracy of genetic maps. Genetics and Molecular Biology 29, 187-192.
Firon, N., Shaked, R., Peet, M.M., Pharr, D.M., Zamski, E., Rosenfeld, K., Althan, L., and Pressman, E. (2006). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae 109, 212-217.
Fragkostefanakis, S., Mesihovic, A., Hu, Y., and Schleiff, E. (2016a). Unfolded protein response in pollen development and heat stress tolerance. Plant Reprod 29, 81-91.
Fragkostefanakis, S., Mesihovic, A., Simm, S., Paupière, M.J., Hu, Y., Paul, P., Mishra, S.K., Tschiersch, B., Theres, K., Bovy, A., Schleiff, E., and Scharf, K.-D. (2016b). HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiology 4, 2461-2467.
Hanson, P.M., Chen, J., and Kuo, G. (2002). Gene action and heritability of high-temperature fruit set in tomato line CL5915. Hortscience 37, 172-175.
He, Y., Wang, C., Higgins, J., Yu, J., Zong, J., Lu, P., Zhang, D., and Liang, W. (2016). MEIOTIC F-BOX is essential for male meiotic DNA double strand break repair in rice. The Plant Cell 8, 1879-1893.
Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., Kapoor, S., Tyagi, A.K., and Khurana, J.P. (2007). F-Box proteins in rice. genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology 143, 1467-1483.
Kim, D., Landmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12, 357-360.
Kim, S.Y., Hong, C.B., and Lee, I. (2001). Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. Journal of Plant Research 114, 301-307.
Krasensky, J., and Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63, 1593-1608.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and Proc, G.P.D. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
Li, L., Li, Y., Song, S., Deng, H., Li, N., Fu, X., Chen, G., and Yuan, L. (2015). An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta 241, 157-166.
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550.
Lu, Y., Li, C., Wang, H., Chen, H., Berg, H., and Xia, Y. (2011). AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis. The Plant journal : for cell and molecular biology 67, 13-25.
Lucas, M.R., Ehlers, J.D., Huynh, B.-L., Diop, N.-N., Roberts, P.A., and Close, T.J. (2013). Markers for breeding heat-tolerant cowpea. Molecular Breeding 31, 529-536.
MA, K., SS, S., AE, M., and MSS, A. (2010). Genetic evaluation and molecular markers for heat tolerance in tomato (Lycopersicon esculentum Mill.) 6, 364-374.
Mesihovic, A., Iannacone, R., Firon, N., and Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reproduction 29, 93-105.
Muller, F., Xu, J., Kristensen, L., Wolters-Arts, M., de Groot, P.F., Jansma, S.Y., Mariani, C., Park, S., and Rieu, I. (2016). High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One 11, e0167614.
Paupière, M.J., van Haperen, P., Rieu, I., Visser, R.G.F., Tikunov, Y.M., and Bovy, A.G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica 213, 1-8.
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33, 290-295.
Pressman, E. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany 90, 631-636.
Prigge, M., Greenham, K., Zhang, Y., Santner, A., Castillejo, C., Mutka, A.M., Malley, R.C., Ecker, J.R., Kunkel, B.N., and Estelle, M. (2016). The Arabidopsis auxin receptor F-box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. G3: Genes|Genomes|Genetics 6, 1383-1390.
Rieu, I., Twell, D., and Firon, N. (2017). Pollen development at high temperature: from acclimation to collapse. Plant Physiology 173, 1967-1976.
Sage, T.L., Bagha, S., Lundsgaard-Nielsen, V., Branch, H.A., Sultmanis, S., and Sage, R.F. (2015). The effect of high temperature stress on male and female reproduction in plants. Field Crops Research 182, 30-42.
Sangu, E., Tibazarwa, F.I., Nyomora, A., and Symonds, R.C. (2015). Expression of genes for the biosynthesis of compatible solutes during pollen development under heat stress in tomato (Solanum lycopersicum). Journal of Plant Physiology 178, 10-16.
Sato, S., Peet, M.M., and Thomas, J.F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell & Environment 23, 719-726.
Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., and Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany 97, 731-738.
Schafleitner, R. (2011). Genes affecting important horticultural traits isolated, validated, and functionally analyzed using genomics and molecular technologies. Year in review 2011 - World Vegetable Center 2011, 40-41.
Shabalin, A.A. (2012). Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353-1358.
Sim, S.C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M.W., Van Deynze, A., Hamilton, J.P., Buell, C.R., Causse, M., Wijeratne, S., and Francis, D.M. (2012). Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7, e40563.
Symington, L.S. (2002). Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiology and Molecular Biology Reviews 66, 630-670.
Usman, M.G., Rafii, M.Y., Ismail, M.R., Malek, M.A., and Abdul Latif, M. (2014). Heritability and genetic advance among Chili pepper genotypes for heat tolerance and morphophysiological characteristics. The Scientific World Journal 2014, 308042.
Voorrips, R.E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93, 77-78.
Xu, J., Wolters-Arts, M., Mariani, C., Huber, H., and Rieu, I. (2017a). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica 213, 156.
Xu, J., Driedonks, N., Rutten, M.J.M., Vriezen, W.H., de Boer, G.J., and Rieu, I. (2017b). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding 37, 58.
Yu, J., Cheng, Y., Feng, K., Ruan, M., Ye, Q., Wang, R., Li, Z., Zhou, G., Yao, Z., Yang, Y., and Wan, H. (2016). Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Frontiers in Plant Science 7, 1215.
Zhou, J., Wang, J., Yu, J.-Q., and Chen, Z. (2014). Role and regulation of autophagy in heat stress responses of tomato plants. Frontiers in Plant Science 5, 174.
Zinn, K.E., Tunc-Ozdemir, M., and Harper, J.F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany 61, 1959-1968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊