跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭昱辰
研究生(外文):YU CHEN KUO
論文名稱:高速壓電三軸掃描器之非線性效應補償方法
論文名稱(外文):A Nonlinear Effect Compensation Method for a High Speed Piezoelectric Three-Axis Scanner
指導教授:廖先順
指導教授(外文):Shun Hsien Liao
口試委員:楊志文高豐生
口試委員(外文):Chi Wen YangFong Sheng Gao
口試日期:2019-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:86
中文關鍵詞:原子力顯微鏡壓電致動器遲滯效應系統鑑別
DOI:10.6342/NTU201901034
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
原子力顯微鏡為一利用探針掃描樣品表面以得到奈米解析度之成像技術,其致動器採用壓電材料以達到奈米級精度。然而,遲滯效應造成控制壓電材料之驅動電壓與實際伸長量呈現一非線性關係。遲滯效應會降低量測的正確度,並造成表面影像失真。此外,在材料機械特性之計算上亦會產生誤差。本研究為了改善一自製高速掃描器之非線性特性,設計一像散式位移量測架構以量測致動器之電壓與位移關係,並且藉由系統鑑別建構致動器之數學模型,進而推算出校正驅動電壓訊號。實驗結果顯示利用校正驅動訊號可成功提升致動器之位移線性度,在XYZ三個軸向上皆達到0.995以上之決定係數。最後,利用校正驅動訊號控制原子力顯微鏡對一標準方格樣品進行掃圖,結果顯示本方法可改善遲滯效應所造成之失真現象。
Atomic force microscopy (AFM) is an imaging technique that utilizes a cantilever tip to scan the sample surface at nanoscale. Piezoelectric materials are used in the AFM scanner to achieve nanometer resolution. However, the hysteresis effect of the piezoelectric materials causes a nonlinear relationship between the driving signal and the actual displacement, which causes the accuracy reduction and image distortion. Moreover, the hysteresis effect also generates calculation error in the mechanical properties measurement. In this thesis, to compensate the nonlinear effect of a home-made high-speed scanner, an astigmatic detection system was built to measure the scanner displacement. Mathematical models of the three-axis scanner were constructed by system identification. To generate modified driving signals. The experimental results show that the proposal method improved the scanner linearity with the coefficient of determination of over 0.995 in three directions. Finally, a standard sample was imaged using the modified driving signals. The result confirms that the proposed method can
improve the image distortion due to the hysteresis effect.
致謝 I
摘要 II
Abstract III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.2.1原子力顯微鏡 2
1.2.2高速原子力顯微鏡 6
1.2.3壓電遲滯補償 9
1.3 內容簡介 15
第二章 研究方法 16
2.1 研究方法概述 16
2.2 系統識別 17
2.2.1模型假設 18
2.2.2參數識別 21
2.3校正電壓求取 21
第三章 Z軸壓電致動器非線性效應補償 24
3.1 Z軸光學讀取頭靈敏度校正實驗 24
3.1.1實驗架構 24
3.1.2 實驗流程 30
3.1.3 實驗結果 30
3.2 Z軸遲滯曲線量測實驗及校正訊號驗證實驗 33
3.1.1實驗架構 33
3.2.2 實驗流程 36
3.2.3 實驗結果 37
第四章 XY軸壓電致動器非線性效應補償 48
4.1 實驗架構 48
4.2 實驗流程 50
4.3 實驗結果 51
第五章 原子力顯微鏡掃圖實驗 71
5.1實驗架構 71
5.2實驗流程 74
5.3實驗結果 76
第六章 結論與展望 80
6.1結論 80
6.2未來工作 80
參考文獻 81
附錄A壓電元件規格表 84
附錄B探針規格表 85
附錄C樣品規格表 86
[1]G. Binnig and H. Rohrer, "Scanning tunneling microscopy." Surface science, vol. 126, no. 1-3, pp. 236-244, 1983.
[2]G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope." Physical review letters, vol. 56, no. 9, p. 930, 1986.
[3]T. Ando, T. Uchihashi, and N. Kodera, "High-speed AFM and applications to biomolecular systems." Annual review of biophysics, vol. 42, pp. 393-414, 2013.
[4]S. Lee, S. Howell, A. Raman, and R. Reifenberger, "Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment." Physical Review B, vol. 66, no. 11, p. 115409, 2002.
[5]S. Devasia, E. Eleftheriou, and S. R. Moheimani, "A survey of control issues in nanopositioning." IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 802-823, 2007.
[6]B. Voigtländer, "Scanning probe microscopy." Springer, 2015.
[7]C. Ru and L. Sun, "Improving positioning accuracy of piezoelectric actuators by feedforward hysteresis compensation based on a new mathematical model."Review of Scientific Instruments, vol. 76, no. 9, p. 095111, 2005.
[8]Y. Martin, C. Williams, and H. K. Wickramasinghe, "Atomic force microscope–force mapping and profiling on a sub 100‐Å scale." Journal of Applied Physics, vol. 61, no. 10, pp. 4723-4729, 1987.
[9]E.-T. Hwu, K.-Y. Huang, S.-K. Hung, and S. Hwang, "Measurement of cantilever displacement using a compact disk/digital versatile disk pickup head" Japanese Journal of Applied Physics, vol. 45, no. 3S, p. 2368, 2006.
[10]G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma, "Design and modeling of a high-speed AFM-scanner" IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 906-915, 2007.
[11]Toshio Ando,Takayuki Uchihashi,Noriyuki Kodera,Daisuke Yamamoto,Atsushi Miyagi,Masaaki Taniguchi,Hayato Yamashita, "High-speed AFM and nano-visualization of biomolecular processes." Pflügers Archiv - European Journal of Physiology, vol. 456, no. 1, pp. 211-225, 2008/04/01 2008.
[12]Y. Yong, S. R. Moheimani, B. J. Kenton, and K. Leang, "Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues," Review of scientific instruments, vol. 83, no. 12, p. 121101, 2012.
[13]W. T. Ang, P. K. Khosla, and C. N. Riviere, "Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications," IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 134-142, 2007.
[14]K. Spanner, O. Vyshnevskyy, and W. Wischnewskiy, "Design of linear ultrasonic micro piezo motor for precision mechatronic systems," Physik Instrumente, 2006.
[15]R. H. Comstock, "Charge control of piezoelectric actuators to reduce hysteresis effects," ed: Google Patents, 1981.
[16]K. Sang-Soon, U. Pinsopon, S. Cetinkunt, and S. Nakajima, "Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner," IEEE/ASME Transactions on Mechatronics, vol. 5, no. 3, pp. 273-280, 2000.
[17]H.-S. Liao et al., "High-speed atomic force microscope based on an astigmatic detection system" Review of Scientific Instruments, vol. 85, no. 10, p. 103710, 2014.
[18]H. Kaizuka and B. Siu, "A Simple Way to Reduce Hysteresis and Creep When Using Piezoelectric Actuators," Japanese Journal of Applied Physics, vol. 27, no. Part 2, No. 5, pp. L773-L776, 1988/05/20 1988.
[19]M. Goldfarb and N. Celanovic, "Modeling piezoelectric stack actuators for control of micromanipulation," IEEE Control Systems Magazine, vol. 17, no. 3, pp. 69-79, 1997.
[20]J. G. Webster, L. Ljung, "System Identification," in Wiley Encyclopedia of Electrical and Electronics Engineering, 2017.
[21]I. D. Mayergoyz and G. Friedman, "Generalized Preisach model of hysteresis," IEEE Transactions on Magnetics, vol. 24, no. 1, pp. 212-217, 1988.
[22]M. Gevers, "Identification for Control: From the Early Achievements to the Revival of Experiment Design." European Journal of Control, vol. 11, no. 4, pp. 335-352, 2005/01/01/ 2005.
[23]A. Ohata, K. Furuta, and H. Nita, "Identification of nonlinear ARX model with input and output dependent coefficients," in 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006, pp. 2577-2582.
[24]A. Wills, T. B. Schön, L. Ljung, and B. Ninness, "Identification of Hammerstein–Wiener models," Automatica, vol. 49, no. 1, pp. 70-81, 2013/01/01/ 2013.
[25]R. G. D. Steel and J. H. Torrie, "Principles and procedures of statistics," Principles and procedures of statistics., 1960.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊