跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俞典
研究生(外文):Yu-Tien Huang
論文名稱:基於前期效能從多個粒子群優化演算法的設定模型中選擇最佳的設定模型
論文名稱(外文):Selecting the Best Setting Model from Multiple Setting Models of Particle Swarm Optimization Based on the Previous Performance
指導教授:張炎清
指導教授(外文):Yen-Ching Chang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學資訊學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:18
中文關鍵詞:優化粒子群優化演算法切換
外文關鍵詞:optimizationparticle swarm optimizationalgorithmswitch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在搜索目標函數最佳解的演算法領域中,粒子群優化演算法為簡單且有效的演算法。它的優點包括簡單且易於理解和實現,但其缺點是容易陷入區域最佳解中。為了保持原有的優點並提高其效能,我們在試著提出並驗證一個新穎的想法,這個構想乃是基於前期效能選擇最佳粒子群優化演算法的設定模型;設定模型的選擇是透過一種在具有多個設定模型的粒子群優化演算法中做切換。實驗結果證明,透過以此方案執行的粒子群優化演算法表現優於其它個別的模組設定。在未來,我們相信具備多模型選擇能力的粒子群優化演算法必將是富有前景的研究領域。此外,這個概念可以輕易地延伸到一種可從多個優化演算法中選擇最好的優化演算法的方案。
In the field of searching the optimal solutions of objective functions, particle swarm optimization (PSO) can be said to be a simple but effective algorithm. Its advantages include simplicity and ease to understand and implement, but it easily leads to getting stuck in local optima. In order to maintain the original benefit and promote its performance, we propose a novel idea in this paper, which selects the best setting model of PSO based on the previous performance through a switch of PSO with multiple setting models. Experimental results show that the PSO through the scheme is better than any with its individual setting alone. In the future, PSO algorithms with a switch of multiple models will be a promising research field. In addition, the idea can be easily extended to a scheme of selecting the best from multiple optimization methods.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表次 V
第一章:緒論 1
1.1文獻探討 1
1.2研究動機 2
1.3研究目的 2
第二章:研究方法 4
2.1粒子群優化演算法與其兩種設定 4
2.1.1粒子群優化演算法的第一種設定 5
2.2.2粒子群優化演算法的第二種設定 5
2.2粒子群優化演算法的多模型切換方案 6
第三章:實驗與討論 8
3.1基準函數 8
3.2實驗設定 8
3.3實驗結果與討論 8
第四章:結論與未來展望 14
4.1結論 14
4.2未來展望 14
參考文獻 15
[1]Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995.
[2]Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69-73, 1998.
[3]Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimization,” Evolutionary Programming VII Lecture Notes in Computer Science, vol. 1447, pp 591-600, 1998.
[4]Y. Shi and R. Eberhart, “Empirical study of particle swarm optimization,” Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1945-1950, 1999.
[5]M. Clerc and J. Kennedy, “The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, pp. 58–73, 2002.
[6]M. Clerc, “The swarm and the queen towards a deterministic and adaptive particle swarm optimization,” Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1951-1957, 1999.
[7]R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” Proceedings of the Congress on Evolutionary Computation, pp. 84-88, 2000.
[8]I. C. Trelea, “The particle swarm optimization algorithm: Convergence analysis and parameter selection,” Information Processing Letters 85, pp. 317–325, 2003.
[9]M. Jiang, Y.P. Luo, S.Y. Yang, “Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm, ” Information Processing Letters 102, 8-16, 2007.
[10]R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An overview,” Swarm Intell., vol. 1, pp. 33-57, 2007.
[11]X.-S. Yang, Introduction to Mathematical Optimization - From Linear Programming to Metaheuristics, Cambridge: Cambridge International Science Publishing, 2008.
[12]X.-S. Yang, Nature-Inspired Optimization Algorithms, First Edition. New York: Elsevier, 2014.
[13]G. Lindfield and J. Penny, Numerical Methods Using MATLAB, Second Edition. New Jersey: Prentice Hall, 2000.
[14]N. Higashi, and H. Iba, “Particle swarm optimization with Gaussian mutation,” Proceedings of the IEEE Swarm Intelligence Symposium, pp. 72-79, 2003.
[15]R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 204–210, 2004.
[16]K. E. Parsopoulos and M. N. Vrahatis, “UPSO: A united particle swarm optimization scheme,” Lecture Series on Computer and Computational Sciences, vol. 1, pp. 868-873, 2004.
[17]K. E. Parsopoulos and M. N. Vrahatis, “Unified particle swarm optimization for solving constrained engineering optimization problems,” Advances in Natural Computation Lecture Notes in Computer Science, vol. 3612, pp 582-591, 2005.
[18]R. A. Krohling, L. dos S Coelho. “Co-evolutionary particle swarm using Gaussian distribution to solving constraint optimization problems,” IEEE Trans. on Systems, Man, and Cybernetics, part B: Cybernetics, vol. 36, pp.1407-1416, 2006.
[19]J. Kenndy and R. Mendes, “Neighborhood topologies in fully informed and best-of-neighborhood particle swarms,” IEEE Trans. on Systems, Man, and Cybernetics, part C: Applications and Reviews, vol. 36, pp.515-519, 2006.
[20]H. Wang, Z. Wu, S. Rahnamayan, C. Li, S. Zeng, and D. Jiang, “Particle swarm optimisation with simple and efficient neighbourhood search strategies,” International Journal of Innovative Computing and Applications, vol. 3, no. 2, pp. 97–104, 2011.
[21]J. Kennedy, “Bare bones particle swarms,” Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80-87, 2003.
[22]R. A. Krohling and E. Mendel, “Bare bones particle swarm optimization with Gaussian or Cauchy jumps,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3285–3291, 2009.
[23]J. Yao and D. Han, “Improved barebones particle swarm optimization with neighborhood search and its application on ship design,” Mathematical Problems in Engineering, vol. 2013, pp. 1-12, 2013.
[24]Y.-C. Chang, L.-C. Lai, C.-C. Chueh, Y. Xu, C.-H. Heieh, “A study of particle swarm optimization with considering more local best particles,” International Conference on Software Engineering and Computer Science, pp. 116-119, 2013.
[25]Y.-C. Chang, C.-C. Chueh, Y. Xu, C.-H. Heieh, Y.-L. Chen, Y.-T. Huang, and C. Xie, “Bare bones particle swarm optimization with considering more local best particles,” 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation, pp. 1105-1108, 2013.
[26]Y.-C. Chang, C.-H. Hsieh, Y. Xu, Y.-L. Chen, C.-C. Chueh, Y.-T. Huang, and C. Xie “Introducing the concept of velocity into bare bones particle swarm optimization,” 2014 International Conference on Information Science, Electronics and Electrical Engineering, pp. 1580-1584, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊