|
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. ACM, p. 463. Balabanović, M., & Shoham, Y. (1997). content-based, collaborative recommendation. Bancu, C., Dagadita, M., Dascalu, M., Dobre, C., Trausan-Matu, & Florea, A. (2012). ARSYS - Article Recommender System. Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016, 11). Research-paper recommender systems: a literature survey. International Joural on Digital Libraries. Blei, D. M., & Ng, A. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, pp. 993–1022. Burke, R. (2005). Hybrid systems for personalized recommendations. Intelligent Techniques for Web Personalization, (pp. 133–152). Croft, W., & Belkin, N. (1992). Information filtering and information retrieval: Two sides of the same coin? Communications of the ACM. Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative filtering recommender systems. Foundations and Trends in Human-Computer Interaction. Haizhou, L., & Baosheng, Y. (1998). Chinese word segmentation. Language, 212, 217. Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of UAI, (p. 21). Ji, X., Ritter, A., & Yen, P. (2017). Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews. Siomedical Informatics. Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1), 11-21. Jurafsky, D., & Martin, J. (2000). Speech and language processing. Prentice Hall. Kompan, M., & Bielikov´a, M. (2010). Content-based News Recommendation. Lin, H., Yang, X., & Wang, W. (2014). A Content-Boosted Collaborative Filtering Algorithm for Personalized Training in Interpretation of Radiological Imaging. Pan, W., Xia, S., Liu, Z., Peng, X., & Ming, Z. (2016). Mixed factorization for collaborative recommendation with heterogeneous explicit feedbacks. INFORMATION SCIENCES. Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of. Reading: Addison-Wesley. NY. Stern, D. H., & Graepel, T. (2009). Stern, D. H., Herbrich, R., & Graepel, T. (2009). Matchbox: Large scale online bayesian recommendations. ACM. Tiroshi, A., Berkovsky, S., Kaafar, M., Vallet, D., & Kflik.T. (2014). Graph-Based Recommendations: Make the Most Out of Social Data. Yamamoto, M., & Church, K. W. (2001). Using suffix arrays to compute term frequency and document frequency for all substrings in a corpus. Computational Linguistics, 1-30. Zheng.L., Li.L., Hong.W., & Li.T. (2013). PENETRATE: Personalized news recommendation using ensemble hierarchical clustering. Expert systems with application.
|