跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳芃豫
研究生(外文):Peng-Yu Wu
論文名稱:磁性研磨法的撓性刷作用機制之研究
論文名稱(外文):Studies on the Action Mechanism of Flexible Brush Using Magnetic Abrasive Finishing
指導教授:李榮宗李榮宗引用關係邱源成
指導教授(外文):Rong-Tsong LeeYuang-Cherng Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:100
中文關鍵詞:磨粒夾持機制撓性磁刷的作用機制磁刷成型方式撓性磁刷觀察裝置撓性磁刷磁性研磨法
外文關鍵詞:Flexible magnetic abrasive brushMagnetic abrasive finishingObservation device of flexible magnetic brushAbrasive clamping mechanismMagnetic brush forming methodAction mechanism of flexible magnetic abrasive brush
相關次數:
  • 被引用被引用:3
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
  本實驗為了觀察撓性磁刷的結構與作用機制,使用自行研製之撓性磁刷觀察裝置。實驗分為工件靜止與轉動兩部分,使用粒徑介於40~62 µm之鐵顆粒所形成之撓性磁刷,探討負荷(0.25 ~ 10 N)、鐵顆粒重量(0.1 ~ 0.5 g)、磁刷成型方式(自然成型、治具成型、預壓成型)、乾式或濕式磁刷(添加氧化鋁磨粒與煤油)等參數對於磁刷之孔隙率、高度、接觸面積與摩擦係數的影響。
  在工件靜止狀態之實驗得知,磁刷中鐵顆粒的排列在自然成型的情況為不完全依照磁力線方向排列;治具成型的情況較均勻;預壓成型的情況最緊密。磁刷受負荷擠壓之變化過程依序為尖端變形,接著斷裂並重新排列成短且密的磁刷。另一方面,磁刷之孔隙率隨著負荷增加逐漸下降至飽和。在輕負荷下,預壓成型磁刷的孔隙率較自然成型與治具成型磁刷的情況小。
  在工件轉動狀態之實驗得知,在負荷1 N以下磁刷與工件接觸面積陡升,磁刷高度陡降;在負荷1 N以上接觸面積與高度變化趨於平緩。另外在輕負荷下預壓成型磁刷的接觸面積較治具成型磁刷大,磁刷高度則較低;重負荷下磁刷高度皆趨近於0.6 mm,接觸面積趨近於115 mm2。另一方面,輕負荷下預壓成型磁刷的摩擦係數為0.4,較另外兩種成型方式(0.2)高。重負荷下摩擦係數則皆為0.2。
  於鐵粉混入氧化鋁磨粒排列方式實驗發現輕負荷下,氧化鋁磨粒會以團塊形式存在於磁刷間的縫隙。隨負荷增加,磁刷間隙變小,氧化鋁磨粒團塊也分散於鐵顆粒之間。鐵粉中加入氧化鋁磨粒後,摩擦係數會由0.2增至0.23。另一方面,鐵粉加入煤油組成的磁刷摩擦係數最低(0.15)。鐵粉加入煤油與氧化鋁磨粒組的摩擦係數最高(0.25)。
  In order to observe the structure and mechanism of the flexible magnetic abrasive brush (FMAB), this research uses a self-developed observation device of flexible magnetic brush. The experiments are divided into two parts: the workpiece is stationary or rotating. FMAB is formed by iron particles with a particle size of 40-62 μm. The effects of load (0.25 ~ 10 N), iron particle weight (0.1 ~ 0.5 g), magnetic brush forming method (natural forming, fixture forming, preload forming), dry or wet magnetic brush (adding alumina abrasive and kerosene) on the porosity, the height, the contact area of magnetic brush, and the friction coefficient are investigated.
When the workpiece is stationary, the iron particles in natural forming FMAB is not completely arranged according to the direction of the magnetic line; Fixture forming FMAB is relatively uniform; Preload forming FMAB is the most compact. The change process of the magnetic brush by the load is sequentially deformed by the tip, and then broken and rearranged into a short and dense magnetic brush. On the other hand, the porosity of the FMAB gradually decreases to a saturation value as the load increases. At light load, the porosity of the preload forming FMAB is smaller than that of the natural forming and fixture forming FMAB.
When the workpiece is rotating, the contact area between FMAB and workpiece rises sharply, and the height of FMAB drops sharply at load less than 1 N, but they tend to be gentle at load higher than 1 N. In addition, under light load, the contact area of the preload forming FMAB is larger than that of fixture forming FMAB, and the magnetic brush height is also lower; under heavy load, all FMAB heights are close to 0.6 mm, and the contact area are close to 115 mm2. On the other hand, the friction coefficient of the preload forming FMAB under light load is 0.4, which is higher than the other two FMABs (0.2). The friction coefficient under heavy load is 0.2.
  When alumina abrasives are added into the iron powders, the alumina abrasive exists in the gap between the magnetic brushes in the form of agglomerates under light load. As the load increases, the magnetic brush gap becomes smaller, and the alumina abrasive agglomerates are also dispersed between the iron particles. In addition, the friction coefficient increases from 0.2 to 0.23 as alumina abrasives are added into the iron powders. On the other hand, the FMAB composed of iron powder and kerosene has the lowest friction coefficient (0.15). The FMAB composed of iron powder, kerosene and alumina abrasive has the highest friction coefficient (0.25).
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 ix
表次 xii
符號說明 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1平面研磨 4
1.2.2圓柱外表面研磨 9
1.2.3內表面研磨 12
1.3 研究目的 16
2.1 撓性磁刷觀察裝置 17
2.1.1 底板 20
2.1.2觀察窗模組 22
2.1.3 工具模組 24
2.1.4 負荷施加模組 27
2.1.5 驅動模組 29
2.1.6 力量測模組 31
2.1.7 位移量測模組 33
2.2 資料擷取及攝影設備 36
2.2.1 USB-6210型USB資料擷取器 36
2.2.2 Infinity model K2長焦距顯微鏡 36
2.2.3 SONY XC-003 3CCD彩色攝影模組 37
2.2.4 OLYMPUS Model LGPS 手提式光源模組 37
2.3 實驗材料之特性與幾何形狀 38
2.3.1 工件材料與幾何形狀 38
2.3.2 磁鐵 39
2.3.3 鐵粉 40
2.4 實驗材料的前處理方式 41
2.4.1 自然成型磁刷 41
2.4.2 治具成型磁刷 42
2.4.3 預壓成型磁刷 43
2.5 實驗步驟 44
2.5.1工具前處理 44
2.5.2靜態實驗步驟 45
2.5.3動態實驗步驟 46
第三章 實驗結果與討論 47
3.1 撓性磁刷之靜態分析 48
3.1.1 磁鐵的磁場強度與磁力線方向 48
3.1.2 撓性磁刷的排列方式 50
3.1.3 撓性磁刷受負荷變形的排列方式 52
3.1.4 鐵粉量對於磁刷孔隙率的影響 56
3.1.5 成型方式對於磁刷孔隙率的影響 59
3.2 撓性磁刷之動態分析 61
3.2.1 撓性磁刷受摩擦力影響之變化 61
3.2.2 撓性磁刷的成型方式對於磁刷高度的影響 64
3.2.3 撓性磁刷的成型方式對於撓性磁刷與觀察窗接觸面積的影響 65
3.2.4 撓性磁刷的成型方式對於摩擦係數的影響 68
3.3 磨粒或加工液對磁刷影響之分析 69
3.3.1 鐵粉混入氧化鋁磨粒加工之影響 69
3.3.2 鐵粉混入煤油加工之影響 72
3.3.3 鐵粉混入氧化鋁磨粒與煤油加工之影響 75
3.3.4 磨粒或加工液對加工時的摩擦係數之影響 78
第四章 結果與未來研究方向 79
4.1 結論 79
4.2 未來研究方向 81
參考文獻 82
[1]進村武男、波田野栄十,“磁気研磨法の研究-永久磁石を利用した研磨装置の試作”, The Japan Society for Precision Engineering, Vol.53, No.3 (1987) 497-500。
[2]Shinmura, “Study on plane magnetic abrasive finishing (3rd report) on the finishing characteristics of non-ferromagnetic substances”, J. of JSPE, Vol. 55, No. 7 (1989) 1271-1276.
[3]Anzai, “Magnetic Finishing of WC-Co Alloy Using Diamond Paste”, Journal of the Japan Society of Powder and Powder Metallurgy, Vol. 39, No. 6 (1992) 510-514.
[4]Shinmura, Wang and Aizawa, “Study on a New Finishing Process of Fine Ceramics by Magnetic Abrasive Machining - On the Improving Effect of Finishing Efficiency Obtained by Mixing Diamond Magnetic Abrasives with Ferromagnetic Particles”, J. of JSPE, Vol. 59, No. 8 (1993) 1251-1256.
[5]黃文科, “磁氣研磨拋光之研究”,國立雲林科技大學機械工程研究所碩士論文(2001)。
[6]Kawakubo, Tsuchiya, Sato, Yamazaki, Miki, Tezuka, “Surface magnetic polishing using spindle through type magnetic pole -Influence of particle brush on polishing characteristics”, Journal of the Japan Society for Abrasive Technology, Vol. 46, No. 8 (2002) 401-406.
[7]Mori, Hirota and Kawashima, “Clarification of magnetic abrasive finishing mechanism”, Journal of Materials Processing Technology 143–144 (2003) 682–686.
[8]林清田,“不銹鋼SUS304磁力研磨拋光加工特性之研究”,國立中興大學機械工程研究所碩士論文(2004)。
[9]Natsume, Shinmura, “Study on the Mechanism of Plain Magnetic Abrasive Finishing Process (Elucidation of Normal Force Characteristics”, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 74, No. 737 (2008) 212-218.
[10]Mulik and Pandey, “Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives”, Int. Journal of Refractory Metals and Hard Materials 29 (2011) 68–77.
[11]Mishra, Goel, Mulik and Pandey, “Determining work-brush interface temperature in magnetic abrasive finishing process”, Journal of Manufacturing Processes 16 (2014) 248–256.
[12]馬雷、古木 辰也、呉魏、廣垣 俊樹、青山栄一, “磁気研磨ブラシによる研磨機構の解明”, 日本機械学会論文集, Vol. 82, No. 844 (2016) 1-12.
[13]李文华, “磁力研磨中磁性磨料受到的磁力数值拟合研究”, 礦山機械, 卷46, (2018) 015.
[14]Shinmura, Takasawa, Hatano, “Study on Magnetic-abrasive Finishing (1st Report) - On Process Principle and a Few Finishing Characteristics”, The Japan Society for Precision Engineering, Vol. 52, No. 5 (1986) 851-857.
[15]Shinmura, Takasawa, Hatano, Aizawa, “Study on Magnetic-abrasive Finishing (2nd Report) - Finishing Characteristics”, The Japan Society for Precision Engineering, Vol. 52, No. 10 (1986) 1761-1767.
[16]Shinmura, “ Development of Magnetic Abrasive Finishing Apparatus using Vibratory Magnetic Poles and Its Finishing Performance”, Journal of the Japan Society for Precision Engineering, Vol. 54, No. 11 (1988) 2170-2175.
[17]Shinmura, Takazawa, Hatano and Matsunaga, “Study on magnetic abrasive finishing”, Annals of the CIRP, Vol. 39, No. 1 (1990) 325-328.
[18]進村武男、山口ひとみ,“圓筒形磁性研磨法的研究-磁性磨粒的行為和研磨壓力產生機制”,日本精密工学会誌,Vol. 62,No. 2 (1996) 258-259。
[19]Shinmura, Shinbo, Iizuka, “A New Internal Finishing Process of a Nonferromagnetic Tubing by Applying a Rotating Magnetic Field - The Development of Finishing Equipment for Practical Use and Its Finishing Performances”, Journal of the Japan Society for Precision Engineering, Vol. 59, No. 6 (1993) 81-86.
[20]Yamaguchi and Shinmura, “Study on a new internal finishing process by the application of magnetic abrasive machining - discussion of the cylindricity”, J. of JSPE, Vol. 61, No. 7 (1995) 996-1000.
[21]Yamaguchi and Shinmura, “Study on a new internal finishing process by application of magnetic abrasive machining (4th report, effects of diameter of magnetic abrasives on finishing characteristics)”, Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 61, No. 591 (1995) 4470-4475.
[22]Yamaguchi and Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system - discussion of the characteristic abrasive behavior”, Precision Engineering, Vol. 24 (2000) 237-244.
[23]Yamaguchi, Shinmura, Watanabe, “Study of a Magnetic Field Assisted Internal Finishing Process using Abrasive Slurry Circulation System - Effects of Geometrical and Magnetic Properties of Magnetic Particles on the Finishing Characteristics”, The Japan Society for Precision Engineering, Vol. 67, No. 3 (2001) 444-449.
[24]莊政儒,“磁力研磨法應用於方管內表面精磨之研究”,華梵大學機電工程研究所碩士論文(2002)。
[25]Wang, Shinmura and Yamaguchi, “Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components Finishing characteristics under wet finishing using distilled water”, International Journal of Machine Tools & Manufacture, Vol. 44 (2004) 1547-1553.
[26]Yamaguchi, Kang and Hashimoto, “Metastable austenitic stainless-steel tool for magnetic abrasive finishing”, CIRP Annals - Manufacturing Technology, Vol. 60 (2011) 339-342.
[27]Kang and Yamaguchi, “Internal finishing of capillary tubes by magnetic abrasive finishing using a multiple pole-tip system”, Precision Engineering, Vol. 36 (2012) 510-516.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top