|
[1] Huang, R. F., Yang, H. F., and Hsu, C. M., "Flame Behavior and Thermal Structure of Combusting Nonpulsating and Pulsating Plane Jets," Journal of Propulsion and Power, Vol. 29, No. 1, 2012, pp. 114-124. doi:10.2514/1.B34580. [2] Yang, H. F., Hsu, C. M., and Huang, R. F., "Controlling Plane-Jet Flame by a Fluidic Oscillation Technique," Journal of Engineering for Gas Turbines and Power, Vol. 136, No. 041501, 2014, pp. 1-10. doi:10.1115/1.4025928. [3] Stambuleanu, A., Flame Combustion Processes in Industry, English ed. Abacus Press, Tunbridge Wells,England, 1976. [4] Mi, J. and Nathan, G. J., "Statistical Analysis of the Velocity Field in a Mechanical Precessing Jet Flow," Physics of Fluids, Vol. 17, No. 015102, 2005, pp. 1-17. doi:10.1063/1.1824138. [5] Raghu, S., "Fluidic Oscillators for Flow Control," in Exp Fluids vol. 54, ed, 2013, pp. 1-11. [6] Gregory, J. W., Sullivan, J. P., Raman, G., and Raghu, S., "Characterization of the Microfluidic Oscillator," AIAA Journal, Vol. 45, No. 3, 2007, pp. 568-576. doi:10.2514/1.26127. [7] Tesař, V. and Peszynski, K., "Strangely Behaving Fluidic Oscillator," EPJ Web of Conferences Vol. 45, No. 01074, 2013, pp. 1-6. doi:10.1051/epjconf/20134501074. [8] Sun, C.-L. and Sun, C.-Y., "Effective Mixing in a Microfluidic Oscillator Using an Impinging Jet on a Concave Surface," Microsyst Technol, Vol. 17, 2011, pp. 911-922. doi:10.1007/s00542-010-1177-7. [9] Gebhard, U., Hein, H., and Schmidt, U., "Numerical Investigation of Fluidic Micro-Oscillators," Journal of Micromechanics and Microengineering Vol. 6, 1996, pp. 115-117. [10] Yang, J.-T., Chen, C.-K., Hu, I.-C., and Lyu, P.-C., "Design of a Self-Flapping Microfluidic Oscillator and Diagnosis With Fluorescence Methods," Journal of Microelectromechanical Systems, Vol. 16, No. 4, 2007, pp. 826-835. doi:10.1109/JMEMS.2007.899338. [11] Olivotto, C., "Fluidic Elements based on Coanda Effect," Incas Bulletin, Vol. 2, No. 4, 2010, pp. 163-172. doi:10.13111/2066-8201.2010.2.4.21. [12] Joyce, J. W., "Fluidics: basic components and applications," US Army Electronics Development Command, Harry Diamond Labs Special Report, Vol. HDL-SR-83-9, 1983. [13] Chen, C.-K., Wang, L., Yang, J.-T., and Chen, L. T., "Experimental and Computational Analysis of Periodic Flow Structure in Oscillatory Gas Flow Meters," Journal of Mechanics, Vol. 22, No. 2, 2006, pp. 137-144. [14] Kirshner, J. M. and Katz, S., Design Theory of Fluidic Components. Academic Press, Inc., New York, 1975. [15] Chang, K. T. and Huang, R. F., "Development and Characterization of Jet-Injected Vee-Gutter," Journal of Mechanics, Vol. 20, No. 1, 2004, pp. 77-83. [16] Huang, R. F. and Chang, K. T., "Evolution and Turbulence Properties of Self-Sustained Transversely Oscillating Flow Induced by Fluidic Oscillator," Journal of Fluids Engineering, Vol. 129, No. 8, 2007, pp. 1038-1047. doi:10.1115/1.2746905. [17] Tesař, V., Zhong, S., and Rasheed, F., "New Fluidic-Oscillator Concept for Flow-Separation Control," AIAA Journal, Vol. 51, No. 2, 2013, pp. 397-405. doi:10.2514/1.J051791. [18] Rasheed, F., "Development of Fluidic Oscillator Based Active Flow Control System for Wind Turbine Blades," The Eighth Asia-Pacific Conference on Wind Engineering, Vol. APCWE-VIII, 2013, pp. 1286-1293. doi:10.3850/978-981-07-8012-8 318. [19] Del Campo, D., Bergada, J. M., and Del Campo, V., "Preliminary Study on Fluidic Actuators. Design Modifications.," presented at the International Conference on Mechanics, Materials, Mechanical Engineering and Chemical Engineering, Barcelona, Spain, 2015. [20] Mi, J. and Nathan, G. J., "Self-Excited Jet-Precession Strouhal Number and Its Influence on Downstream Mixing Field," Journal of Fluids and Structures, Vol. 19, No. 6, 2004, pp. 851-862. doi:10.1016/j.jfluidstructs.2004.04.006. [21] Uzol, O. and Camci, C., "Experimental and Computational Visualization and Frequency Measurements of the Jet Oscillation inside a Fluidic Oscillator," Journal of Visualization, Vol. 5, No. 3, 2002, pp. 263-272. [22] Huang, R. F. and Chang, K. T., "Fluidic Oscillation Influences on V-Shaped Bluffbody Flow," AIAA Journal, Vol. 43, No. 11, 2005, pp. 2319-2328. doi:Doi 10.2514/1.13604. [23] Mataoui, A. and Schiestel, R., "Unsteady Phenomena of an Oscillating Turbulent Jet flow Inside a Cavity: Effect of Aspect Ratio," Journal of Fluids and Structures, Vol. 25, 2009, pp. 60-79. doi:10.1016/j.jfluidstructs.2008.03.010. [24] Gordeyev, S. V. and Thomas, F. O., "Coherent Structure in the Turbulent Planar Jet. Part 2. Structural Topology Via POD Eigenmode Projection," Journal of Fluid Mechanics, Vol. 460, 2002, pp. 349-380. doi:10.1017/S0022112002008364. [25] Landel, J. R., Caulfield, C. P., and Woods, A. W., "Meandering due to Large Eddies and the Statistically Self-Similar Dynamics of Quasi-Two-Dimensional Jets," Journal of Fluid Mechanics, Vol. 692, 2012, pp. 347-368. doi:10.1017/jfm.2011.518. [26] Manivannan, P. and Sridhar, B. T. N., "Characteristic Study of Non-Circular Incompressible Free Jet," Thermal Science, Vol. 17, No. 3, 2013, pp. 787-800. doi:10.2298/TSCI110208116M. [27] Mi, J. and Nathan, G. J., "Statistical Properties of Turbulent Free Jets Issuing from Nine Differently-Shaped Nozzles," Flow Turbulence Combust, Vol. 84, 2010, pp. 583-606. doi:10.1007/s10494-009-9240-0. [28] Wygnanski, B. I. and Fiedler, H., "Some Measurements in the Self-Preserving Jet," Journal of Fluid Mechanics, Vol. 38, No. part 3, 1969, pp. 577-612. [29] Coles, D., "The Use of Coherent Structures," AIAA Paper 1985-0506, 1985. [30] Brown, G. L. and Roshko, A., "On Density Effects and Large Structure in Turbulent Mixing Layers," Journal of Fluid Mechanics, Vol. 64, No. part 4, 1974, pp. 775-816. doi:10.1017/S002211207400190X. [31] Koched, A., Pavageau, M., and Aloui, F., "Vortex Structure in the Wall Region of an Impinging Plane Jet," Journal of Applied Fluid Mechanics, Vol. 4, No. 2, Special Issue, 2011, pp. 61-69. [32] Deo, R. C., Mi, J., and Nathan, G. J., "The Influence of Nozzle Aspect Ratio on Plane Jets," Experimental Thermal and Fluid Science, Vol. 31, No. 8, 2007, pp. 825-838. doi:10.1016/j.expthermflusci.2006.08.009. [33] Mi, J., Deo, R. C., and Nathan, G. J., "Characterization of Turbulent Jets from High-Aspect-Ratio Rectangular Nozzles," Physics of Fluids, Vol. 17, No. 6, 2005, pp. 1-5. doi:10.1063/1.1928667. [34] Akbarzadeh, M. and Birouk, M., "Near-Field Characteristics of a Rectangular Jet and Its Effect on the Liftoff of Turbulent Methane Flame," Journal of Engineering for Gas Turbines and Power, Vol. 137, 2015, pp. 1-8. doi:10.1115/1.4029371. [35] Quinn, W. R., "Turbulent Free Jet Flows Issuing from Sharp-Edged Rectangular Slots: The Influence of Slot Aspect Ratio," Experimental Thermal and Fluid Science, Vol. 5, 1992, pp. 203-215. doi:10.1016/0894-1777(92)90007-R. [36] Makarov, D. and Molkov, V., "Plane Hydrogen Jets," International Journal of Hydrogen Energy, Vol. 38, 2013, pp. 8068-8083. doi:10.1016/j.ijhydene.2013.03.017. [37] Iyogun, C. O. and Birouk, M., "Effect of Sudden Expansion on Entrainment and Spreading Rates of a Jet Issuing from Asymmetric Nozzles," Flow Turbulence Combust, Vol. 82, 2009, pp. 287-315. doi:10.1007/s10494-008-9176-9. [38] Gutmark, E., Schadow, K. C., Parr, T. P., Hanson-Parr, D. M., and Wilson, K. J., "Noncircular Jets in Combustion Systems," Experiments in Fluids, Vol. 7, 1989, pp. 248-258. [39] Deo, R. C., Mi, J., and Nathan, G. J., "Experimental Investigations of the Effect of Reynolds Number on a Plane Jet," 16th Australasian Fluid Mechanics Conference, 2007, pp. 262-265. [40] Zaman, K. B. M. Q., "Spreading Characteristics of Compressible Jets from Nozzles of Various Geometries," Journal of Fluid Mechanics, Vol. 383, 1999, pp. 197-228. doi:10.1017/S0022112099003833. [41] Namazian, Z., "Effect of Velocity on the Length of Flames in Turbulent Non-Premixed Flames," International Journal of Mechanical And Production Engineering, Vol. 4, No. 1, 2016, pp. 9-12. [42] Akbarzadeh, M. and Birouk, M., "Liftoff of a Co-Flowing Non-Premixed Turbulent Methane Flame: Effect of the Fuel Nozzle Orifice Geometry," Flow Turbulence Combust, Vol. 92, 2014, pp. 903-929. doi:10.1007/s 10494-014-9537-5. [43] Hu, L., Liu, S., and Zhang, X., "Flame Heights of Line-Source Buoyant Turbulent Non-Premixed Jets With Air Entrainment Constraint by Two Parallel Side Walls," Fuel, Vol. 200, 2017, pp. 583-589. doi:10.1016/j.fuel.2017.03.082. [44] Iyogun, C. O. and Birouk, M., "Effect of Fuel Nozzle Geometry on the Stability of a Turbulent Jet Methane Flame," Combustion Science and Technology, Vol. 180, No. 12, 2008, pp. 2186-2209. doi:10.1080/00102200802414980. [45] Kalghatgi, G. T., "Lift-off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air," Combustion Science and Technology, Vol. 41, 1984, pp. 17-29. doi:10.1080/00102208408923819. [46] Peters, N. and Williams, F. A., "Liftoff Characteristics of Turbulent Jet Diffusion Flames," AIAA Journal, Vol. 21, No. 3, 1983, pp. 423-429. [47] Chung, S. H. and Lee, B. J., "On the Characteristics of Laminar Lifted Flames in a Nonpremixed jet," Combustion and Flame, Vol. 86, 1991, pp. 62-72. [48] Iyogun, C. O. and Birouk, M., "Effect of Fuel Nozzle Geometry on the Stability of a Turbulent Jet Methane Flame," Combustion Science and Technology, Vol. 18, No. 12, 2008, pp. 2186-2209. doi:10.1080/00102200802414980. [49] Huang, R. F. and Chang, K. T., "Oscillation Frequency in Wake of a Vee Gutter," Journal of Propulsion and Power, Vol. 20, No. 5, 2004, pp. 871-878. doi:Doi 10.2514/1.9431. [50] Yang, H. F., Hsu, C. M., and Huang, R. F., "Flame Behavior of Bifurcated Jets in a V-Shaped Bluff-Body Burner," Journal of Marine Science and Technology, Vol. 22, No. No. 5, 2014, pp. 606-611. doi:10.6119/JMST-013-1025-1. [51] Szego, G. G., Dally, B. B., and Nathan, G. J., "Operational Characteristics of a Parallel Jet MILD Combustion Burner System," Combustion and Flame, Vol. 156, 2009, pp. 429-438. doi:10.1016/j.combustflame.2008.08.009. [52] Reed, R. J., North American Combustion Handbook, Second ed. North American Manufacturing Company, Cleveland, 1978. [53] Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., The Properties of Gases and Liquids, Third ed. McGraw-Hill, New York, 1977. [54] E. Starling, K., The properties of gases and liquids, Third Edition, Robert C. Reid, John M. Prausnitz and Thomas K. Sherwood, McGraw-Hill(1977), 688 pages,$27.50 vol. 24, 1978. [55] Grandmaison, E. W., Yimer, I., Becker, H. A., and Sobiesiak, A., "The Strong-Jet/Weak-Jet Problem and Aerodynamic Modeling of the CGRI Burner," Combustion and Flame, Vol. 114, 1998, pp. 381-396. doi:SSDI 0010-2180(97)00314-3. [56] Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering. Prentice-Hall, Englewood, New Jersey, 1988. [57] Glassman, I. and Yetter, R. A., Combustion, Fourth ed. Elsevier Inc., London, 2008, pp. 344-367. [58] Luo, M., "Effects of Radiation on Temperature Measurements in a Fire Environment," Journal of Fire Sciences, Vol. 15, 1997, pp. 443-461. doi:0734-9041/97/06 0443-19. [59] Ang, J. A., Pagni, P. J., and Mataga, T. G., "Temperature and Velocity Profiles in Sooting Free Boundary Layer Flames," AIAA-86-0575, 1986. [60] Habli, S., Saïd, N. M., Palec, G. L., and Bournot, H., "Numerical Study of a Turbulent Plane Jet in a Coflow Environment," Computers & Fluids, Vol. 89, 2014, pp. 20-28. doi:10.1016/j.compfluid.2013.10.013. [61] Datta, A. and Sinhamahapatra, K. P., "Investigation of the Influence of Co-Flow Velocity Ratio on a Compressible Plane Jet Exhausting into Parallel Streams," AerospaceScienceandTechnology, Vol. 45, 2015, pp. 186–195. doi:10.1016/j.ast.2015.05.012.
|