跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏雅
研究生(外文):YAN, YA
論文名稱:屎腸球菌對萬古黴素感受性的比較蛋白質體學研究
論文名稱(外文):Comparative proteomic studies on the susceptibility of Enterococcus faecium to vancomycin
指導教授:黃小萍黃小萍引用關係
指導教授(外文):Huang, Shiao-ping
口試委員:尤慧玲賴志河
口試委員(外文):You, Huey-LingLai, Chih-Ho
口試日期:2019-07-01
學位類別:碩士
校院名稱:輔英科技大學
系所名稱:醫學檢驗生物技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:141
中文關鍵詞:萬古黴素屎腸球菌感受性同位素標記相對和絕對定量
外文關鍵詞:vancomycinEnterococcus faeciumsusceptibilityiTRAQ
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
腸球菌會引起與醫療相關的感染 (HAI),其中包括手術傷口感染、心內膜炎、菌血症、尿路感染和腦膜炎。近年來,醫療相關的感染(HAI)的主要致病菌之一為萬古黴素抗藥性腸球菌 (VRE),尤其是萬古黴素抗藥性腸球菌 (VRE)中,又以屎腸球菌比例為最高。本研究的目的是想要了解屎腸球菌(Enterococcus faecium)對於萬古黴素感受性的比較蛋白質體學。一、我們使用LIVE/DEAD雙螢光染色檢測萬古黴素感受性屎腸球菌(VSE)和萬古黴素抗藥性腸球菌 (VRE)受萬古黴素調控後的變化,結果顯示在1小時可以區分VRE和VSE。二、我們使用SDS-PAGE偵測屎腸球菌受萬古黴素調控一小時後的蛋白質改變,結果顯示無法清楚看到蛋白質變化。三、我們使用同位素標記相對和絕對定量方法(iTRAQ)來鑑定改變蛋白質,結果顯示出VSE有303種顯著性蛋白(向上調節蛋白質為164種、向下調節蛋白質有139種),VRE有269 種顯著性蛋白(向上調節蛋白質為114種、向下調節蛋白質有155種)。四、VSE向上調解的132種特有蛋白質、VRE向上調解的82種特有蛋白質。透過蛋白質分析得到的結果,有助於我們瞭解萬古黴素抗藥性屎腸球菌 (VRE) 與萬古黴素感受性的屎腸球菌(VSE)在加入萬古黴素作用之後的分子機制和細胞反應。
The enterococci cause the healthcare-associated infection (HAI) including surgical wound infection, endocarditis, bacteremia, urinary tract infections, and meningitis. Recently, the vancomycin-resistant enterococci (VRE) have emerged as a major cause of HAI. In particular, the vancomycin-resistance in Enterococcus faecium is highest among all species of VRE. This study comparative proteomic on the susceptibility of Enterococcus faecium to vancomycin. First, we used LIVE/DEAD staining detecting vancomycin-susceptibility Enterococcus faecium (VSE) and vancomycin-resistant Enterococcus faecium (VRE) of vancomycin treatment. The results showed that in 1 hours can distinguish between VRE and VSE. Second, we used SDS-PASE detection Enterococcus faecium of vancomycin treatment for 1 hours. The results showed that cannot distinguish the change of protein. Third, we using isobaric tags for relative and absolute quantitation (iTRAQ) method identification change protein. The results show that the VSE has 303 significant protein (164 up regulation protein, 139 down regulated protein )
VRE has 269 significantly protein (114 up regulation proteins and 155 down regulated proteins). At last, VSE has 117 specific proteins and VRE has 82 specific proteins were found. The protein analysis results can help us understand the molecular mechanism and cellular reaction of Vancomycin-resistant Enterococcus faecium (VRE) to Vancomycin-sensitive Enterococcus faecium (VSE) by adding vancomycin.

誌謝-i
中文摘要 -iii
英文摘要 -iv
目錄 -v
表目錄 -vii
圖目錄 -viii
名詞簡寫說明-ix
第一章 緒論-1
第二章 文獻探討-2
第一節 屎腸球菌-2
一、 屎腸球菌的生長特性及環境-2
二、 屎腸球菌的基因型-3
三、 屎腸球菌感染所造成的疾病- 4
四、 腸球菌感染的流行病學-5
第二節 屎腸球菌感染治療-6
一、 屎腸球菌治療概述-6
二、 治療藥物-7
三、 萬古黴素的重要性- 7
四、 屎腸球菌藥敏試驗- 8
第三節 萬古黴素抗藥性屎腸球菌-9
一、 萬古黴素抗藥性屎腸球菌的重要性-9
二、 萬古黴素抗藥性屎腸球菌治療-9
三、 萬古黴素可變性的屎腸球菌-10
第四節 蛋白質體學的測定方法-11
一、 二維電泳法-11
二、 差異性二維電泳法-12
三、 質譜儀-13
四、 相對和絕對同位素標記分析法-14
第五節 研究動機-15
第六節 研究架構-16
第三章 研究方法-17
第一節 實驗材料與設備-17
一、 菌株-17
二、 培養基-17
三、 實驗藥品及試劑-18
四、 實驗儀器-21
第二節 實驗方法-23
一、 屎腸球菌培養-23
二、 雙螢光染色-23
三、 螢光儀定量-24
四、 蛋白質萃取-25
五、 蛋白質電泳分析-26
六、 相對和絕對同位素標記分析-28
七、 蛋白質體比對-35
第四章 研究結果-36
第一節 使用雙螢光染色法偵測屎腸球菌的死亡-36
第二節 屎腸球菌受萬古黴素調控的顯著改變蛋白質-38
第三節 萬古黴素感受性屎腸球菌受萬古黴素調控的蛋白質-40
第四節 萬古黴素抗藥性屎腸球菌受萬古黴素調控的蛋白質-42
第五節 比較萬古黴素感受性以及萬古黴素抗藥性屎腸球菌受萬古黴素調控的蛋白質差異-44
第六節 屎腸球菌受萬古黴素調控後的顯著改變蛋白質路徑-46
第五章 討論與結論-48
第一節 使用雙螢光染色法偵測屎腸球菌的死亡-49
第二節 屎腸球菌受萬古黴素調控的顯著改變蛋白質-50
第三節 比較萬古黴素感受性以及萬古黴素抗藥性屎腸球菌受萬古黴素調控的蛋白質差異-52
第四節 屎腸球菌受萬古黴素調控的改變蛋白質路徑-54
第五節 結論-55
參考文獻 -56
附錄一 蛋白質數目總整理- 127
附錄二 2018年海峽兩岸檢驗醫學論壇暨第18屆海峽兩岸檢驗醫學學術交流會議-128





表 目 錄

表一、 以iTRAQ分析經萬古黴素處理1小時的VSE和VRE概述-66
表二、 使用iTRAQ 分析VSE受萬古黴素調控所產生的164種向上調節蛋白質功能分類-67
表三、 使用iTRAQ 分析 VSE受萬古黴素調控所產生的164種向上調節蛋白質及改變倍數-68
表四、 使用iTRAQ 分析VSE受萬古黴素調控所產生的139種向下調節蛋白質功能分類-75
表五、 使用iTRAQ 分析 VSE受萬古黴素調控所產生的139種向下調節蛋白質及改變倍數76
表六、 使用iTRAQ 分析VRE受萬古黴素調控所產生的114種向上調節蛋白質功能分類-82
表七、 使用iTRAQ 分析VRE受萬古黴素調控所產生的114種向上調節蛋白質及改變倍數-83
表八、 使用iTRAQ 分析VRE受萬古黴素調控所產生的155種向下調節蛋白質功能分類-88
表九、 使用iTRAQ 分析VRE受萬古黴素調控所產生的155種向下調節蛋白質及改變倍數-89
表十、 受萬古黴素調控而向上調節的VSE蛋白質包括VSE所特有蛋白質與VRE共同的蛋白質-96
表十一、 受萬古黴素調控而向上調節的132種VSE特有蛋白質-97
表十二、 受萬古黴素調控而向上調節的VRE蛋白質包括VRE所特有蛋白質及VRE與VSE共同的蛋白質-103
表十三、 受萬古黴素調控而向上調節的82種VRE特有蛋白質-104
表十四、 VSE的303種顯著改變蛋白質功能路徑分析-108
表十五、 VRE的269種顯著改變蛋白質功能路徑分析-109

圖 目 錄

圖一、 以螢光顯微鏡觀察經萬古黴素處理VSE在0、1、2小時的變化-110
圖二、 以螢光顯微鏡觀察經萬古黴素處理VRE在0、1、2小時的變化-111
圖三、 以螢光儀偵測經萬古黴素處理VSE造成細菌死亡-112
圖四、 經萬古黴素處理VSE兩小時內的存活率-113
圖五、 經萬古黴素處理1小時的VSE和VRE蛋白質表現-114
圖六、 經萬古黴素處理1小時VSE的顯著差異蛋白質數目-115
圖七、 經萬古黴素處理1小時VSE的顯著差異蛋白質功能分析-116
圖八、 VSE受萬古黴素調控所產生的164種向上調節蛋白質功能分類-117
圖九、 VSE受萬古黴素調控所產生的139種向下調節蛋白質功能分類-118
圖十、 經萬古黴素處理1小時VRE的顯著差異蛋白質數目-119
圖十一、 經萬古黴素處理1小時VRE的顯著差異蛋白質功能分析-120
圖十二、 VRE受萬古黴素調控所產生的114種向上調節蛋白質功能分類-121
圖十三、 VRE受萬古黴素調控所產生的155種向下調節蛋白質功能分類-122
圖十四、 受萬古黴素調控而向上調節的132種VSE特有蛋白質-123
圖十五、 受萬古黴素調控而向上調節的82種VRE特有蛋白質-124
圖十六、 利用KEGG軟體分析VSE的蛋白質功能路徑-125
圖十七、 利用KEGG軟體分析VRE的蛋白質功能路徑-126

1.Abbo, L., Shukla, B. S., Giles, A., Aragon, L., Jimenez, A., Camargo, J. F.,Arias, C. A. (2018). Linezolid and Vancomycin-Resistant Enterococcus faecium in Solid Organ Transplant Recipients: Infection Control and Antimicrobial Stewardship Using Whole Genome Sequencing. Clin Infect Dis. doi:10.1093/cid/ciy903
2.Abdallah, M., & Al-Saafin, M. (2019). Overview of Prevalence, Characteristics, Risk Factors, Resistance, and Virulence of Vancomycin-Resistant Enterococci in Saudi Arabia. Microb Drug Resist, 25(3), 350-358. doi:10.1089/mdr.2018.0241
3.Abdelhady, W., & Mishra, N. N. (2019). Comparative Efficacies of Linezolid vs. Tedizolid in an Experimental Murine Model of Vancomycin-Resistant Enterococcal (VRE) Bacteremia. Front Med (Lausanne), 6, 31. doi:10.3389/fmed.2019.00031
4.Aggarwal, S., & Yadav, A. K. (2016). Dissecting the iTRAQ Data Analysis. Methods Mol Biol, 1362, 277-291. doi:10.1007/978-1-4939-3106-4_18
5.Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol, 10(4), 266-278. doi:10.1038/nrmicro2761
6.Bethea, J. A., Walko, C. M., & Targos, P. A. (2004). Treatment of vancomycin-resistant enterococcus with quinupristin/dalfopristin and high-dose ampicillin. Ann Pharmacother, 38(6), 989-991. doi:10.1345/aph.1D377
7.Beukers, A. G., Zaheer, R., Goji, N., Amoako, K. K., Chaves, A. V., Ward, M. P., & McAllister, T. A. (2017). Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiol, 17(1), 52. doi:10.1186/s12866-017-0962-1
8.Boehm, A. B., & Sassoubre, L. M. (2014). Enterococci as Indicators of Environmental Fecal Contamination. In M. S. Gilmore, D. B. Clewell, Y. Ike, & N. Shankar (Eds.), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston.
9.Boulos, L., Prevost, M., Barbeau, B., Coallier, J., & Desjardins, R. (1999). LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods, 37(1), 77-86.
10.Britt, N. S., Potter, E. M., Patel, N., & Steed, M. E. (2015). Comparison of the Effectiveness and Safety of Linezolid and Daptomycin in Vancomycin-Resistant Enterococcal Bloodstream Infection: A National Cohort Study of Veterans Affairs Patients. Clin Infect Dis, 61(6), 871-878. doi:10.1093/cid/civ444
11.Byrd, B., & Tran, H. (2019). Two-Dimensional Gel Electrophoresis with Immobilized pH Gradients. Methods Mol Biol, 1855, 125-129. doi:10.1007/978-1-4939-8793-1_13
12.Cattoir, V., & Leclercq, R. (2013). Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother, 68(4), 731-742. doi:10.1093/jac/dks469
13.Chen, C., Yan, T., Liu, L., Wang, J., & Jin, Q. (2018). Identification of a Novel Serum Biomarker for Tuberculosis Infection in Chinese HIV Patients by iTRAQ-Based Quantitative Proteomics. Front Microbiol, 9, 330. doi:10.3389/fmicb.2018.00330
14.Chopra, S., Ramkissoon, K., & Anderson, D. C. (2013). A systematic quantitative proteomic examination of multidrug resistance in Acinetobacter baumannii. J Proteomics, 84, 17-39. doi:10.1016/j.jprot.2013.03.008
15.Courvalin, P. (2006). Vancomycin resistance in gram-positive cocci. Clin Infect Dis, 42 Suppl 1, S25-34. doi:10.1086/491711
16.Downing, M. A., Xiong, J., Eshaghi, A., McGeer, A., Patel, S. N., & Johnstone, J. (2015). Vancomycin-Variable Enterococcal Bacteremia. J Clin Microbiol, 53(12), 3951-3953. doi:10.1128/JCM.02046-15
17.Falcone, M., Tiseo, G., Dentali, F., Foglia, E., Campanini, M., Menichetti, F., . . . Gisa. (2019). Early alert from microbiology laboratory improves the outcome of elderly patients with Enterococcus spp bacteremia: results from a multicenter prospective study. J Glob Antimicrob Resist. doi:10.1016/j.jgar.2019.02.014
18.Fan, T. J., Goeser, L., Naziripour, A., Redinbo, M., & Hansen, J. J. (2019). Enterococcus faecalis Gluconate Phosphotransferase System Accelerates Experimental Colitis and Bacterial Killing by Macrophages. Infect Immun. doi:10.1128/IAI.00080-19
19.Gagetti, P., Bonofiglio, L., Garcia Gabarrot, G., Kaufman, S., Mollerach, M., Vigliarolo, L., . . . Lopardo, H. A. (2018). Resistance to beta-lactams in enterococci. Rev Argent Microbiol. doi:10.1016/j.ram.2018.01.007
20.Gagnon, S., Levesque, S., Lefebvre, B., Bourgault, A. M., Labbe, A. C., & Roger, M. (2011). vanA-containing Enterococcus faecium susceptible to vancomycin and teicoplanin because of major nucleotide deletions in Tn1546. J Antimicrob Chemother, 66(12), 2758-2762. doi:10.1093/jac/dkr379
21.Garcia-Solache, M., & Rice, L. B. (2019). The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev, 32(2). doi:10.1128/CMR.00058-18
22.Giron-Gonzalez, J. A., & Perez-Cano, R. (2003). [Treatment of the infections by enterococcus]. Rev Clin Esp, 203(10), 482-485.
23.Goez, M. M., Torres-Madronero, M. C., Rothlisberger, S., & Delgado-Trejos, E. (2018). Preprocessing of 2-Dimensional Gel Electrophoresis Images Applied to Proteomic Analysis: A Review. Genomics Proteomics Bioinformatics, 16(1), 63-72. doi:10.1016/j.gpb.2017.10.001
24.He, S., Hong, X., Huang, T., Zhang, W., Zhou, Y., Wu, L., & Yan, X. (2017). Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry. Methods Appl Fluoresc, 5(2), 024002. doi:10.1088/2050-6120/aa64e4
25.Heitkamp, R. A., Li, P., Mende, K., Demons, S. T., Tribble, D. R., & Tyner, S. D. (2018). Association of Enterococcus spp. with Severe Combat Extremity Injury, Intensive Care, and Polymicrobial Wound Infection. Surg Infect (Larchmt), 19(1), 95-103. doi:10.1089/sur.2017.157
26.Holland, A. (2018). Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis. Methods Mol Biol, 1664, 185-202. doi:10.1007/978-1-4939-7268-5_15
27.Jawetz, E., & Sonne, M. (1966). Penicillin-streptomycin treatment of enterococcal endocarditis. A re-evaluation. N Engl J Med, 274(13), 710-715. doi:10.1056/NEJM196603312741304
28.Ji, X., Liu, X., Peng, Y., Zhan, R., Xu, H., & Ge, X. (2017). Comparative analysis of methicillin-sensitive and resistant Staphylococcus aureus exposed to emodin based on proteomic profiling. Biochem Biophys Res Commun, 494(1-2), 318-324. doi:10.1016/j.bbrc.2017.10.033
29.Khan, Z. A., Siddiqui, M. F., & Park, S. (2019). Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics (Basel), 9(2). doi:10.3390/diagnostics9020049
30.Lebreton, F., Willems, R. J. L., & Gilmore, M. S. (2014). Enterococcus Diversity, Origins in Nature, and Gut Colonization. In M. S. Gilmore, D. B. Clewell, Y. Ike, & N. Shankar (Eds.), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston.
31.Lee, C. R., Lee, J. H., Park, K. S., Jeong, B. C., & Lee, S. H. (2015). Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol, 6, 828. doi:10.3389/fmicb.2015.00828
32.Lee, W. S., Lee, S., Kang, T., Ryu, C. M., & Jeong, J. (2019). Detection of Ampicillin-Resistant E. coli Using Novel Nanoprobe-Combined Fluorescence In Situ Hybridization. Nanomaterials (Basel), 9(5). doi:10.3390/nano9050750
33.Levitus, M., & Perera, T. B. (2018). Vancomycin-Resistant Enterococci (VRE). In StatPearls. Treasure Island (FL).
34.Li, H., Han, J., Pan, J., Liu, T., Parker, C. E., & Borchers, C. H. (2017). Current trends in quantitative proteomics - an update. J Mass Spectrom, 52(5), 319-341. doi:10.1002/jms.3932
35.Li, H., Mei, X., Liu, B., Li, Z., Wang, B., Ren, N., & Xing, D. (2019). Insights on acetate-ethanol fermentation by hydrogen-producing Ethanoligenens under acetic acid accumulation based on quantitative proteomics. Environ Int, 129, 1-9. doi:10.1016/j.envint.2019.05.013
36.Lim, S., Seo, H. S., Jeong, J., & Yoon, H. (2019). Understanding the multifaceted roles of the phosphoenolpyruvate: Phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol Res, 223-225, 63-71. doi:10.1016/j.micres.2019.04.002
37.Meleady, P. (2018). Two-Dimensional Gel Electrophoresis and 2D-DIGE. Methods Mol Biol, 1664, 3-14. doi:10.1007/978-1-4939-7268-5_1
38.Ming, T., Geng, L., Feng, Y., Lu, C., Zhou, J., Li, Y., . . . Su, X. (2019). iTRAQ-Based Quantitative Proteomic Profiling of Staphylococcus aureus Under Different Osmotic Stress Conditions. Front Microbiol, 10, 1082. doi:10.3389/fmicb.2019.01082
39.Moghimbeigi, A., Moghimbeygi, M., Dousti, M., Kiani, F., Sayehmiri, F., Sadeghifard, N., & Nazari, A. (2018). Prevalence of vancomycin resistance among isolates of enterococci in Iran: a systematic review and meta-analysis. Adolesc Health Med Ther, 9, 177-188. doi:10.2147/AHMT.S180489
40.Nasaj, M., Mousavi, S. M., Hosseini, S. M., & Arabestani, M. R. (2016). Prevalence of Virulence Factors and Vancomycin-resistant Genes among Enterococcus faecalis and E. faecium Isolated from Clinical Specimens. Iran J Public Health, 45(6), 806-813.
41.Naser, S. M., Vancanneyt, M., De Graef, E., Devriese, L. A., Snauwaert, C., Lefebvre, K., . . . Swings, J. (2005). Enterococcus canintestini sp. nov., from faecal samples of healthy dogs. Int J Syst Evol Microbiol, 55(Pt 5), 2177-2182. doi:10.1099/ijs.0.63752-0
42.Ohlendieck, K. (2018). Comparative DIGE Proteomics. Methods Mol Biol, 1664, 17-24. doi:10.1007/978-1-4939-7268-5_2
43.Oviano, M., & Bou, G. (2019). Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin Microbiol Rev, 32(1). doi:10.1128/CMR.00037-18
44.Pasquali, M., Serchi, T., Planchon, S., & Renaut, J. (2017). 2D-DIGE in Proteomics. Methods Mol Biol, 1654, 245-254. doi:10.1007/978-1-4939-7231-9_17
45.Pessione, A., Lamberti, C., Cocolin, L., Campolongo, S., Grunau, A., Giubergia, S., . . . Pessione, E. (2012). Different protein expression profiles in cheese and clinical isolates of Enterococcus faecalis revealed by proteomic analysis. Proteomics, 12(3), 431-447. doi:10.1002/pmic.201100468
46.Pinault, L., Chabriere, E., Raoult, D., & Fenollar, F. (2019). Direct Identification of Pathogens in Urine by Use of a Specific Matrix-Assisted Laser Desorption Ionization-Time of Flight Spectrum Database. J Clin Microbiol, 57(4). doi:10.1128/JCM.01678-18
47.Qin, X., Galloway-Pena, J. R., Sillanpaa, J., Roh, J. H., Nallapareddy, S. R., Chowdhury, S., . . . Murray, B. E. (2012). Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol, 12, 135. doi:10.1186/1471-2180-12-135
48.Robotti, E., & Marengo, E. (2018). 2D-DIGE and Fluorescence Image Analysis. Methods Mol Biol, 1664, 25-39. doi:10.1007/978-1-4939-7268-5_3
49.Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., . . . Pappin, D. J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 3(12), 1154-1169. doi:10.1074/mcp.M400129-MCP200
50.Schroder, U. C., Beleites, C., Assmann, C., Glaser, U., Hubner, U., Pfister, W., . . . Neugebauer, U. (2015). Detection of vancomycin resistances in enterococci within 3 (1/2) hours. Sci Rep, 5, 8217. doi:10.1038/srep08217
51.Smith, J. R., Yim, J., Raut, A., & Rybak, M. J. (2016). Oritavancin Combinations with beta-Lactams against Multidrug-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci. Antimicrob Agents Chemother, 60(4), 2352-2358. doi:10.1128/AAC.03006-15
52.Suriyanarayanan, T., Qingsong, L., Kwang, L. T., Mun, L. Y., Truong, T., & Seneviratne, C. J. (2018). Quantitative Proteomics of Strong and Weak Biofilm Formers of Enterococcus faecalis Reveals Novel Regulators of Biofilm Formation. Mol Cell Proteomics, 17(4), 643-654. doi:10.1074/mcp.RA117.000461
53.Syal, K., Mo, M., Yu, H., Iriya, R., Jing, W., Guodong, S., . . . Tao, N. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 7(7), 1795-1805. doi:10.7150/thno.19217
54.Szakacs, T. A., Kalan, L., McConnell, M. J., Eshaghi, A., Shahinas, D., McGeer, A., . . . Patel, S. N. (2014). Outbreak of vancomycin-susceptible Enterococcus faecium containing the wild-type vanA gene. J Clin Microbiol, 52(5), 1682-1686. doi:10.1128/JCM.03563-13
55.Thaker, M. N., Kalan, L., Waglechner, N., Eshaghi, A., Patel, S. N., Poutanen, S., . . . Wright, G. D. (2015). Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents Chemother, 59(3), 1405-1410. doi:10.1128/AAC.04490-14
56.Tyson, G. H., Nyirabahizi, E., Crarey, E., Kabera, C., Lam, C., Rice-Trujillo, C., . . . Tate, H. (2018). Prevalence and Antimicrobial Resistance of Enterococci Isolated from Retail Meats in the United States, 2002 to 2014. Appl Environ Microbiol, 84(1). doi:10.1128/AEM.01902-17
57.Ulrich, N., & Gastmeier, P. (2017). Where is the difference between an epidemic and a high endemic level with respect to nosocomial infection control measures? An analysis based on the example of vancomycin-resistant Enterococcus faecium in hematology and oncology departments. GMS Hyg Infect Control, 12, Doc14. doi:10.3205/dgkh000299
58.Wang, L. Y., Cai, X. T., Wang, Z. L., Liu, S. L., Xie, Y. M., & Zhou, H. (2018). [Clinical features of Enterococcus faecium meningitis in children]. Zhongguo Dang Dai Er Ke Za Zhi, 20(3), 200-203.
59.Wiese, S., Reidegeld, K. A., Meyer, H. E., & Warscheid, B. (2007). Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics, 7(3), 340-350. doi:10.1002/pmic.200600422
60.Xu, H. T., Tian, R., Chen, D. K., Xiao, F., Nie, Z. Y., Hu, Y. J., . . . Li, J. M. (2011). Nosocomial spread of hospital-adapted CC17 vancomycin-resistant Enterococcus faecium in a tertiary-care hospital of Beijing, China. Chin Med J (Engl), 124(4), 498-503.
61.Yang, Y., Lin, Y., & Qiao, L. (2018). Direct MALDI-TOF MS Identification of Bacterial Mixtures. Anal Chem, 90(17), 10400-10408. doi:10.1021/acs.analchem.8b02258
62.Yim, J., Smith, J. R., & Rybak, M. J. (2017). Role of Combination Antimicrobial Therapy for Vancomycin-Resistant Enterococcus faecium Infections: Review of the Current Evidence. Pharmacotherapy, 37(5), 579-592. doi:10.1002/phar.1922
63.Zhang, D., Yang, Y., Qin, Q., Xu, J., Wang, B., Chen, J., .Qiao, L. (2019). MALDI-TOF Characterization of Protein Expression Mutation During Morphological Changes of Bacteria Under the Impact of Antibiotics. Anal Chem, 91(3), 2352-2359. doi:10.1021/acs.analchem.8b05080


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top