跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃韶偉
研究生(外文):Shao-Wei, Huang
論文名稱:閾值迴歸模式與迴歸樹在心臟疾病之應用
論文名稱(外文):The Application of Threshold Regression Model and Regression Tree Model in the Heart Disease
指導教授:潘宏裕潘宏裕引用關係
指導教授(外文):Hung-Yu Pan
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:74
中文關鍵詞:心臟疾病同半胱胺酸閾值迴歸模式迴歸樹模式
外文關鍵詞:heart diseasehomocysteinethreshold regression modelclassification and regression treesregression trees
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臨床上已證實同半胱胺酸為影響心臟疾病的重要危險因子。藉由同半胱氨酸的監測可有效管理心臟疾病的病情。真實案例中,若檢測值在特定值以下為正常情況,而在超過特定值時則為異常,此特定值稱為閾值。本研究透過Fong et al. (2017)提出的四種閾值迴歸模式來解釋同半胱胺酸在閾值前後模式的變化情形,故考慮同半胱胺酸為閾值變數並引入其相關解釋變數建構閾值迴歸模式。最後可將四種閾值迴歸模式區分成「急性疾病」與「慢性疾病」兩種模式,藉由閾值迴歸模式找出已患有心臟疾病之病患的同半胱胺酸數值在16 μmol/L時具有不同模式,進而探討若將同半胱胺酸數值以閾值為界,其病患具有哪些分類特徵。最後,本研究利用實例來評估閾值迴歸模式之效果,進而驗證本研究假設急性與慢性的閾值迴歸模式在實際案例中是可行的。
Clinically, homocysteine has been shown to be an important risk factor for heart disease and can be effectively managed by monitoring. In real case, if the detected value is normal below a certain value and is abnormal after exceeding a certain value, this specific value is called “threshold”. In this study, four threshold regression models proposed by Fong et al. (2017) are used to explain the change of homocysteine before or after the threshold. Therefore, consider the homocysteine as a threshold variable and introduce its associated explanatory variable construction threshold regression model. Finally, the four threshold regression models can be divided into two modes: "acute" and "chronic". The threshold regression model can be used to find out that the homocysteine value of patients with different patterns at 16 μmol/L.
目錄
摘 要 i
Abstract ii
致謝辭 iii
目錄 v
表目錄 vii
圖目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2.1心臟血管疾病相關研究 3
2.2 閾值迴歸模式 5
2.3分類與迴歸樹(Classification and regression trees, CART) 9
第三章 研究方法 12
3.1閾值迴歸模式(Threshold Regression Model) 12
3.1.1 急性疾病的閾值迴歸模式(Threshold Regression Model of Acute Disease) 14
3.1.2 慢性疾病的閾值迴歸模式(Chronic Threshold Regression Model of Chronic Disease) 15
3.2迴歸樹(Regression tree) 17
第四章 實例分析 19
4.1 慢性心臟疾病的危險因子研究 19
4.1.1閾值迴歸模式 24
4.1.2 迴歸樹模式 33
4.2多保他命在急性心臟疾病的分析與應用 45
4.2.1閾值迴歸模式 46
4.3 實例分析結論 53
第五章 結論與建議 55
參考文獻 58
附錄(一) 61
附錄(二) 64
[1] A. Alaabed & M. Masih (2016). Finance-growth nexus: Insights from an application of threshold regression model to Malaysia's dual financial system. Borsa Istanbul Review. 16(2), 63-71
[2] L. Breiman, J. Friedman, C. J. Stone & R. A. Olshen (1984). Classification and Regression Trees. Chapman and Hall/CRC. ISBN 978-0412048418.
[3] W. Bischoff, E. Hashorva, J. Hüsler & F. Miller (2005). Analysis of a change-point regression problem in quality control by partial sums processes and Kolmogorov type tests. Metrika, 62, 85-98.
[4] K. H. Bønaa, I. Njølstad, P. M. Ueland, H. Schirmer, A. Tverdal, T. Steigen, H. Wang, J. E. Nordrehaug, E. Arnesen & K. Rasmussen (2006). Homocysteine Lowering and Cardiovascular Events after Acute Myocardial Infarction. The New England Journal of Medicine, 354, 1578-1588.
[5] U. Baur, P. Benner & L. Feng (2014). Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Max Planck Institute Magdeburg Preprints, 14-17.
[6] C. C. Chang & H. J. Keisler (1990). Model Theory, Studies in Logic and the Foundations of Mathematics. Vol. 37, (3rd ed.). North Holland, ISBN 978-0080880075.
[7] K. S. Chan (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The Annals of Statistics, 21(1), 520–533.
[8] M. Caner (2002). A note on least absolute deviation estimation of a threshold model. Econometric Theory, 18(3), 800–814.
[9] Y. Fong, C. Di & S. R. Permar (2014). Change Point Testing in Logistic Regression Models with Interaction Term. Statistics in Medicine. 34(9), 1483–1494.
[10] Y. Fong, Y. Huang, P. B. Gilbert & S. R. Permar (2017). chngpt: threshold regression model estimation and inference. BMC Bioinformatics, 18, 454.
[11] L. Gordon (2003). Using Classification and Regression Trees (CART) in SAS® Enterprise Miner for Applications in Public Health. SAS Global Forum 2013, University of Kentucky, Lexington, KY.
[12] H. Guo, J. Chi, Y. Xing & P. Wang (2009). Influence of folic acid on plasma homocysteine levels & arterial endothelial function in patients with unstable angina. Indian Journal of Medical Research, 279-284.
[13] T. J. Hastie & R. J. Tibshirani (1990). Generalized Additive Models, Chapman and Hall/CRC. ISBN-10: 0412343908.
[14] B. E. Hansen (1996). Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64(2), 413–430.
[15] B. E. Hansen (1999). Threshold effects in non-dynamic panels: Estimation, testing and inference. Journal of Econometrics, 93(2), 345–368.
[16] B. E. Hansen (2000). Sample splitting and threshold estimation. Econometrica, 68(3), 575–603.
[17] D. L. Hunt & C. S. Li (2006). A Regression Spline Model for Developmental Toxicity Data. Toxicological Science, 92(1), 329-334.
[18] T. J. Hastie, R. J. Tibshirani & J. Friedman (2009). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (2nd ed.). Springer. ISBN-13: 978-0387848570
[19] J. Krivokapich, J. S. Child, D. O. Walter & A. Garfinkel (1999). Prognostic Value of Dobutamine Stress Echocardiography in Predicting Cardiac Events in Patients with Known or Suspected Coronary Artery Disease. Journal of the American College of Cardiology, 33(3), 708-716.
[20] Loh (2011). Classification and regression trees. Wires, Data mining and knowledge discovery, 1(1), 14-23.
[21] O. Morozova, O. Levina, A. Uusküla & R. Heimer (2015). Comparison of subset selection methods in linear regression in the context of health-related quality of life and substance abuse in Russia. BMC Medical Research Methodology, 15(1), 71.
[22] R. Pastor & E. Guallar (1998). Use of Two-segmented Logistic Regression to Estimate Change-points in Epidemiologic Studies. American Journal of Epidemiology, 148(7), 631-642.
[23] R. Pastor, E. Guallar & J. Coresh (2003). Transition models for change-point estimation in logistic regression. Statistics in medicine. 22(7):1141-1162.
[24] R. Ranjith & P. Devika (2017). Clinical Correlation between Plasma Homocysteine Level and Coronary Artery Disease in Indian Patients. World Journal of Cardiovascular Diseases,7, 477-485.
[25] A. Schaffer, M. Verdoia, E. Cassetti, P. Marino, H. Suryapranata & G. D. Luca (2014). Relationship between Homocysteine and Coronary Artery Disease. Results from a Large Prospective Cohort Study. Thrombosis Research, 134(2):288-293.
[26] S. Wright (1934). An Analysis of Variability in Number of Digits in an Inbred Strain of Guinea Pig, Genetics, 19: 506-36.
[27] W. H. Wheeler (1975). Model-completions and model-companions. Forcing, Arithmetic, Division Rings, Lecture Notes in Mathematics, 454, 44-54.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top