跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李彥伯
研究生(外文):Yen-Po Lee
論文名稱:具有銀反射層之矽薄膜太陽能電池特性之研究
論文名稱(外文):Study of the Properties Based on Silicon Thin Film Solar Cell Thin Silver Reflective Layer
指導教授:陳隆建陳隆建引用關係
口試委員:王俊傑張議聰
口試日期:2011-01-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電與能源產業研發碩士專班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:42
中文關鍵詞:奈米晶粒矽緩衝層
外文關鍵詞:n-Si:Hbuffer layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是探討在非晶矽p-i-n 太陽能電池製作銀反射層電極的光電特性研究。首先是利用電漿輔助化學氣相沉積系統(plasma-enhanced chemical vapor deposition, PECVD)製備所要的非晶矽氫薄膜(a-Si:H)材料;首先在矽基板上成長一層a-Si:H緩衝層,再沉積p-type a-Si:H薄膜,接著使用氫電漿處理a-Si:H緩衝層後,再沉積a-Si:H薄膜,用氫氣稀釋源氣體SiH4的方式沉積n-type a-SiC:H薄膜,然後在n-type a-SiC:H薄膜上利用射頻磁控濺渡系統(Radio-Frequency magnetron sputtering system)濺鍍AZO,用黃光技術作上銀電極,完成具有銀反射層的p-i-n太陽能電池。最後用太陽光模擬光源AM 1.5,強度為100 mW/cm2照射在未加上銀電極的p-i-n太陽能電池,測量得到短路電流為3.423 mA/cm2、開路電壓Voc為 630mV、填充因子FF=0.255及能量轉換效率為5.5%。加上銀電極的p-i-n太陽能電池在相同的量測條件下,量測得到短路電流3.86 mA/cm2、開路電壓Voc為 630mV、填充因子FF=0.255及能量轉換效率為6.21%。這研究顯示加上銀電極後之太陽能電池短路電流提升12.7%,能量轉換效率提升12.9%。

The main purpose of this study was to investigate the amorphous silicon p-i-n solar cell production in the silver reflective layer of optical and electrical properties of electrodes.. First is to utilize the power coupled plasma chemical vapor deposition system (plasma-enhanced chemical vapor deposition, PECVD) amorphous silicon hydrogen to be prepared film (a-Si: H) materials; first grown on Si substrate layer a-Si: H buffer layer , and then deposited p-type a-Si: H film, then use the hydrogen plasma treatment a-Si: H buffer layer, and then deposited a-Si: H films by hydrogen dilution of source gases SiH4 way deposition n-type a -SiC: H films, and then in n-type a-SiC: H films by RF magnetron sputtering system (Radio-Frequency magnetron sputtering system) sputtered AZO, with yellow for the silver electrode technology, complete with silver reflective layer of pin solar cells. T Finally, simulated sunlight light AM 1.5 illumination condition with a solar intensity of 100 mW/cm2 without silver electrodes get the short-circuit current density Jsc = 2.614 mA/cm2, the open-circuit voltage Voc = 630mV, the fill factor FF = 0.255, and the power conversion efficiencies η = 4.2%.;with silver electrodes get the short-circuit current density Jsc = 3.86 mA/cm2, the open-circuit voltage Voc = 630mV, the fill factor FF = 0.255, and the power conversion efficiencies η = 6.21%. Study Showing with silver electrode of solar cells ,the short-circuit current the increase of 12.7%, 12.9% energy conversion efficiency

目 錄

中文摘要... .….i
英文摘要 …ii
致謝 ...iii
目錄 …iv
表目錄 ….v
圖目錄 …vi
第一章 緒論 ….1
1.1 研究動機 ….1
1.2 研究方法與論文架構 ….1
第二章 理論基礎與文獻回顧..........................................................................4
2.1太陽能電池簡介 ....4
2.1.1 太陽能電池起源 ….5
2.1.2 太陽能電池的發展 .......5
2.1.3 太陽能電池工作原理 ….7
2.1.4 理想太陽能電池分析 ….8
2.2 太陽能電池分析 ….9
2.2.1太陽能電池特性 ..10
2.2.2太陽能電池短路電流(Short circuit current,ISC) ..10
2.2.3太陽能電池開路電壓(Open circuit voltage,VOC) ..10
2.2.4太陽能電池光電轉換效率(Power efficiency) ..10
2.2.5太陽能電池光子轉換電流效率 ...11
2.3太陽能電池重要參數 ...11
2.4 光電轉換原理 ...13
2.5 P-I-N接面…. ...14
2.6 濺鍍(Sputter)原理...............................................................................14
2.6.1電漿原理 .…14
2.6.2 反應式濺鍍法(Reactive Sputtering) .............................................16
2.6.3 直流式濺鍍法(Direct Current Sputtering) .....................................16
2.6.4 射頻濺鍍法(Radio Frequency Sputtering) .....................................17
2.6.5磁控濺鍍法(Magnetron sputtering) ......................................17
2.7 電漿輔助化學氣相沈積(PECVD) .......................................18
2.8 描式電子顯微鏡(Scanning Electron Microscope,SEM) .....................19
第三章 實驗方法與步驟...........................................................................21
3.1 實驗架構...........................................................................21
3.2 實驗設備...........................................................................21
3.2.1 快速退火爐(Rapid thermal anneal) ......................................21
3.2.2磁控濺鍍設備(Sputter) ..........................................21
3.3測儀器與量測系統架設.................................................................22
3.3.1反射光譜量測系統.................................................................22
3.3.2流電壓曲線量測及效率程式........................................................22
3.3.3 IPCE量測系統.................................................................22
3.4 實驗步驟...........................................................................22
第四章 實驗結果與討論...........................................................................24
第五章 結論...........................................................................25
第六章 參考文獻...........................................................................41


[1] 周育正,”使用Ag金屬粒子輔助式蝕刻技術製作具有微米孔洞結構砷化鎵混合型光伏元件之研究”,碩士班論文,國立臺北科技大學光電工程研究所,2010.
[2] Serap Günes, Niyazi Serdar Sariciftci,Inorganica Chimica Acta 361 (2008),p.p. 581.
[3] S. M. Sze., Semicondutor Devices: Physisc and Technology,New York: Wiley,1981.
[4] 莊嘉琛,太陽能工程—太陽能電池篇,全華.
[5] Alessandro Fantoni,Manuela Viera,Rodrigo Martins,”Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation”,Solar Energy Materials & Solar Cells,73,p151-162.(2002)
[6] Hong Xiao, Introduction to Semiconductor Manufacturing Technology,Prentice-Hall, Inc.(2000).
[7] 翁睿哲,以射頻磁控濺鍍氮化鉭薄膜製程條件對顯微結構及電性影響研究,碩士論文,國立成功大學材料科學與工程學系,2001.
[8] Techniques for the sputtering of optimum indium-tin oxide films on to room-temperature substrates, N. Danson, I. Safi, Surface and Coatings Technology 99 (1998), p.p.147-160.
[9] 劉育賢,應用於可撓式基板上之有機高分子太陽能電池製程研究,碩士論文,國立臺北科技大學光電工程系,2009.
[10] S. Veprek and V. Marecek, “The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport,” Solid State Electron., Vol. 11, pp. 683-684 (1968).
[11] C. I-Chun and W. Sigurd, “High hole and electron field effect mobility in Nanocrystalline silicon deposited at 150 ℃,” Thin Solid Films, Vol. 427, pp. 56-59 (2003).
[12] Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, “Room temperature nanocrystalline silicon single-electron transistors,” Journal of Applied Physics, Vol. 94, pp. 633-637 (2003)
[13] Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, “Microcrystalline Si: H film and its application to solar cells,” Jpn. J. Appl. Phys., Part 2, Vol. 21, pp. L586 (1986)
[14] J. Nelson, “The physics of solar cells,” Imperial College Press, pp. 249 (2003).
[15] Y. Yamamoto, S. Suganuma, M. Ito, M. Hori, and T. Goto, “Effects of dilution gases on Si atoms and SiHx + (x = 0–3) ions in electron cyclotron resonance SiH4 plasmas,” Jpn. J. Appl. Phys., Part 1, Vol. 36, pp. 4664 (1997)
[16] J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? ,” Appl. Phys. Lett. Vol. 65, pp.860 (1994)
[17] W. Du, X. Liao, X. Yang, H. Povolny, X. Xiang, X. Deng, and K. Sun, “Hydrogenated nanocrystalline silicon p-layer in amorphous silicon n-i-p solar cells,” Solar Energy Materials & Solar Cells, Vol.90, pp 1098-1104 (2006).
[18] S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, Y. M. Yang, Appl. Phys. Lett. 90 (2007) 143517.
[19] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981).
[20] 劉佳怡/工研院IEK新興能源研究部產業分析師,Feature產業特集,太陽光電供應鏈淺談(1),太陽光電產業製程與技術發展趨勢.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top