跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張濰麟
研究生(外文):Wei-Lin Chang
論文名稱:製備疏水性觸媒及其在酯化反應的應用
論文名稱(外文):Preparation of Hydrophobic Catalysts and Application of Esterification Reaction
指導教授:陳建忠陳建忠引用關係
指導教授(外文):Chien-Chong Chen
口試委員:李茂田張仁瑞王朝弘
口試委員(外文):Maw-Tien LeeJen-Ray ChangChao-Hong Wang
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:化學氣象沉積法奈米碳管沸石疏水性觸媒酯化反應
外文關鍵詞:CVDCNTzeolitehydrophobic catalystesterification reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目標是製備疏水性觸媒,並應用於酯化反應。首先,選用顆粒型的觸媒載體為含浸過鈀的沸石(CBV760-Pd) 。以微濕含浸法將鎳置入觸媒載體,其鎳含量佔全部載體的2.5wt%,接著將真空抽氣乾燥去除溶劑之樣品置入方形高溫爐中鍛燒,在空氣氛圍下,以450 ℃進行30分鐘鍛燒奈米碳管之觸媒,再將鍛燒完的觸媒載體,以化學氣相沉積法生長奈米碳管層,其中還原氣體為氫氣、碳源為乙炔、升降溫區段之環境氣體為氬氣,生長溫度為500 ℃,在不同的生長時間(15~130分鐘)下,可以得到的產物為(Pd/CNT/zeolite),是一種核殼結構的疏水性觸媒載體(不同的核殼比)。
一開始,我們是以0.5 g 觸媒載體重量來進行CVD生長,在SEM觀察下,可以發現其表面由CNT覆蓋,管徑是隨著生長時間增加而增加。經過疏水性測試,我們可得知,當生長時間超過50分鐘,接觸角都大於150˚,其表面為超級疏水性。之後將觸媒載體重量從0.5 g變成2.5 g,其接觸角還是有大於140˚。藉由親和性測試結果得知,CNT層不會使乙醇、乙酸、乙酸乙酯無法擴散至觸媒載體內部,Pd/zeolite與溶液親和性: 水≈乙酸乙酯>乙酸>乙醇,Pd/CNT/zeolite與溶液親和性: 乙酸乙酯>乙醇>乙酸>>水。酯化反應部分,以批次反應器進行反應,進料為75%乙醇,其平衡轉化率約52~53%,Pd/zeolite之轉化率提升速度比Pd/CNT/zeolite快。在連續式固定床反應器部分, 在壓力為1和10 atm 時,Pd/zeolite之乙醇轉化率都高於Pd/CNT/zeolite,在壓力提升至20 atm的時候,反應差不多達平衡,轉化率差異不大,介於59~62%。乙酸乙酯產率部分,在壓力為10和20 atm時, Pd/zeolite和Pd/CNT/zeolite產率都差異不大。Pd/CNT/zeolite的CNT外層還具有保護觸媒之功用,可以防止金屬基Pd的流失,可以增加觸媒反應的時間。

The objective of this study is to prepare hydrophobic catalyst. The selection of granule type catalyst support is Pd/zeolite(CBV760-Pd). We deposited nickel nitrate solution as a nickel catalyst precursor on the catalyst supports by incipient wetness impregnation, nickel catalyst content of Pd/zeolite was 2.5 wt.%, and calcined the sample that had been removed the solvent by vacuum drying method under atmosphere at 450 ℃for 30 minutes in the box furnace. Then, grow CNT layer by CVD process after the catalyst precursor was calcined, which hydrogen acted as reduction agent, acetylene as carbon source and argon as ambient gas for heating and cooling stage. The reaction temperature was 500 ℃. At different reaction time(15~130 min), we obtained the Pd/CNT/zeolite which is a hydrophobic catalyst support of core-shell structure(different core-shell ratio).
At the beginning, we used 0.5 g catalyst supports to do CVD growth. Observed from the SEM, the surface of Pd/CNT/zeolite was covered by CNTs. The CNT diameter increases as the reaction time goes on. After doing the hydrophobic measurement, the contact angle of Pd/CNT/zeolite is bigger than 150˚ when the reaction time is more than 50 minutes. The surface of Pd/CNT/zeolite is super hydrophobicity. After that, the weight of catalyst supports was increased from 0.5 g to 2.5 g. The contact angle of Pd/CNT/zeolite is also bigger than 140˚ when the reaction time is more than 50 minute. CNT layer can let EtOH, HOAc, EtOAc diffused into the catalyst by affinity test. The affinity between Pd/zeolite and solution: H2O ≈ EtOAc > HOAc > EtOH. The affinity between Pd/CNT/zeolite and solution: EtOAc > HOAc > EtOH >> H2O. The batch reactor used to esterification reaction. The feed is 75% EtOH. The equilibrium conversion is 52~53%. For conversion, the increased rate of Pd/zeolite is higher than Pd/CNT/zeolite. The continuous fixed-bed reactor used to esterification reaction. At 1 and 10 atm, the conversion of Pd/zeolite is higher than Pd/CNT/zeolite. At 20 atm, the equilibrium conversion of Pd/zeolite and Pd/CNT/zeolite is 59~62%. At 10 and 20 atm, the yield of Pd/zeolite close to Pd/CNT/zeolite. The outer layer of Pd/CNT/zeolite as a protection catalyst role. It can prevent Pd loss. Increased catalyst reaction time.

致謝 I
摘要 III
Abstract V
目錄 VIII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1前言 1
1.2製備奈米碳管 1
1.3奈米碳管應用於觸媒轉化器上 3
1.4乙酸乙酯 5
1.5研究動機 8
第二章 實驗儀器與步驟 9
2.1儀器設備 9
2.2實驗藥品與工具 10
2.3實驗流程圖 11
2.4實驗步驟 12
2.4.1製備疏水性觸媒 12
2.4.2酯化反應-批次反應器系統 14
2.4.3酯化反應-連續式固定床反應器系統 17
第三章 結果與討論 21
3.1觸媒介紹 21
3.2不同的生長時間對Pd/CNT/zeolite的影響(0.5克觸媒載體重量) 21
3.3疏水性測試結果(0.5克觸媒載體重量) 27
3.4將觸媒載體的量提高,進行CVD生長 34
3.4.1不同的生長時間對Pd/CNT/zeolite的影響(2.5克觸媒載體重量) 35
3.4.2疏水性測試結果(2.5克觸媒載體重量) 39
3.4.3溶液與樣品的親和性測試結果(2.5克觸媒載體重量) 41
3.5酯化反應 65
3.5.1產物分析與數據處理 65
3.5.2批次反應器系統 71
3.5.3連續式反應器系統 76
3.5.4反應後表面結構分析 82
第四章 結論與未來展望 88
第五章 文獻回顧 90
附錄一 奈米碳管 92
附錄二 文獻回顧之圖表 103


[1]S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[2]M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science, vol. 287, pp. 637-640, 2000.
[3]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomnek, J. E. Fischer, and R. E. Smalley, "Crystalline Ropes of Metallic Carbon Nanotubes," Science, vol. 273, pp. 483-487, 1996.
[4]C. C. Chen, C. J. Li, K. A. Lin, T. H. Hsu, S. H. Wang, "A Green Process to Prepare Hydrophobic and Transparent CNT-Based Surface ," Key Engineering Materials, vol. 521, pp. 171-178, 2012.
[5]Y. Li, X. B. Zhang, X. Y. Tao, J. M. Xu, W. Z. Huang, J. H. Luo, Z. Q. Luo, T. Li, F. Liu, Y. Bao, H. J. Geise, "Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst," Carbon, vol. 43, pp. 295-301, 2005.
[6]Y. Jia, L. He, L. Kong, J. Liu, Z. Guo, F. Meng, T. Luo, M. Li, J. Liu, "Synthesis of close-packed multi-walled carbon nanotube bundles using Mo as catalyst," Carbon, vol. 47, pp. 1652-1658, 2009.
[7]J. S. Kim, S. J. Cho, K. S. Jeong, Y. C. Choi, M. S. Jeong, "Improved electrical conductivity of very long multi-walled carbon nanotube bundle/poly (methyl methacrylate) composites," Carbon, vol. 49, pp. 2127-2133, 2011.
[8]吳宜穎, "奈米碳管束的合成、機制與性質," 碩士, 化學工程研究所, 國立中正大學, 嘉義縣, 2013.
[9]G. J. Yu, J. L. Gong, D. Z. Zhu, S. X. He, J. Q. Cao, Z. Y. Zhu, " Efficient synthesis of carbon nanotubes over rare earth zeolites by thermal chemical vapor deposition at low temperature," Diamond and Related Materials, vol. 16, pp. 1261-1265, 2006.
[10]D. R. Minett, J. P. O’Byrne, M. D. Jones, V. P. Ting, T. J. Mays, D. Mattia, " One-step production of monolith-supported long carbon nanotube arrays," Carbon, vol. 51, pp. 327-334, 2013.
[11] M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, "Pore structure of raw and purified HiPco single-walled carbon nanotubes," Chemical Physics Letters, vol. 365, pp.69-74, 2002.
[12]S. Musso, S. Porro, M. Vinante, L. Vanzetti, R. Ploeger, M. Giorcelli, B. Possetti, F. Trotta, C. Pederzolli, A. Tagliaferro, " Modification of MWNTs obtained by thermal-CVD," Diamond and Related Materials, vol. 16, pp.1183-1187, 2007.
[13]M. L. Toebes, J. A. van Dillen, K. P. de Jong, "Synthesis of supported palladium catalysts," Journal Molecular Catalysis A: Chemical, vol. 173, pp.75-98, 2001.
[14]D. Duca, F. Ferrante, G. L. Manna, "Theoretical Study of Palladium Cluster Structures on Carbonaceous Supports," The Journal of Physical Chemistry C, vol. 111, pp.5402-5408, 2007.
[15]B. Frank, M. Morassutto, R. Schomäcker, R. Schlögl, and D. S. Su, "Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes," ChemCatChem, vol. 2, pp. 644-648, 2010.
[16]D. S. Su, N. Maksimova, J. J. Delgado, N. Keller, G. Mestl, M. J. Ledoux, R. Schlo¨gl, " Nanocarbons in selective oxidative dehydrogenation reaction," Catalysis Today, vol. 102, pp. 110-114, 2005.
[17]H. Yuan , H. Y. Liu, J.Y. Diao, X.M. Gu, D. S. Su, " Supported carbon nanotubes on SiO2 spheres as robust monolithic catalysts for the oxidative dehydrogenation of ethylbenzene," New Carbon Materials, vol. 28, pp. 336-341, 2013.
[18]簡碩鋒, "利用雙功能觸媒從含水酒精製造乙酸乙酯," 碩士, 化學工程研究所, 國立中正大學, 嘉義縣, 2002.
[19]葉遠平, "酯化反應觸媒的研究發展," 碩士, 化學工程研究所, 國立中正大學, 嘉義縣, 2001.
[20]吳榮宗, 工業觸媒概論, 國興出版社, 2001.
[21]M. Jose‐Yacaman, M. Miki‐Yoshida, L. Rendon, J. Santiesteban, "Catalytic growth of carbon microtubules with fullerene structure," Applied Physics Letters, vol. 62, pp. 202-204, 1993.
[22]M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, "Carbon nanotube growth by PECVD: a review," Plasma Sources Science and Technology, vol. 12, p. 205, 2003.
[23]Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, "Growth and structure of graphitic tubules and polyhedral particles in arc-discharge," Chemical Physics Letters, vol. 204, pp. 277-282, 1993.
[24]R. Baker, M. Barber, P. Harris, F. Feates, R. Waite, "Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene," Journal of Catalysis, vol. 26, pp. 51-62, 1972.
[25]R. Baker and J. Chludzinski Jr, "Filamentous carbon growth on nickel-iron surfaces: The effect of various oxide additives," Journal of Catalysis, vol. 64, pp. 464-478, 1980.
[26]P. G. Collins, A. Zettl, H. Bando, A. Thess, R. Smalley, "Nanotube nanodevice," Science, vol. 278, pp. 100-102, 1997.
[27]J. L. Kwo, M. Yokoyama, W. C. Wang, F. Y. Chuang, I. N. Lin, "Characteristics of flat panel display using carbon nanotubes as electron emitters," Diamond and Related Materials, vol. 9, pp. 1270-1274, 2000.
[28]Y. Chen, D. T. Shaw, X. Bai, E. Wang, C. Lund, W. Lu, "Hydrogen storage in aligned carbon nanotubes," Applied Physics Letters, vol. 78, pp. 2128-2130, 2001.
[29]S. Berber, Y. K. Kwon, D. Tomanek, "Unusually high thermal conductivity of carbon nanotubes," Physical Review Letters, vol. 84, p. 4613, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊