跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張旭鋒
研究生(外文):Syu-Fong Chang
論文名稱:植基於數位信號處理器之雙向直流-直流功率轉換器研製
論文名稱(外文):Development of DSP-Based Bi-directional DC-DC Power Converters
指導教授:葉勝年葉勝年引用關係
指導教授(外文):Sheng-Nian Yeh
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:71
中文關鍵詞:雙向直流-直流功率轉換器零電壓切換 並聯
外文關鍵詞:parallelbi-directional dc-dc power converterzero voltage switching
相關次數:
  • 被引用被引用:3
  • 點閱點閱:493
  • 評分評分:
  • 下載下載:149
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在研製以數位信號處理器為基礎之雙向直流-直流功率轉換器,作為蓄電池充、放電使用。當系統於昇壓模式時,低壓側之蓄電池對高壓側之直流鏈放電;而於降壓模式時,則高壓側之直流鏈對蓄電池充電。本文將回授高、低壓側電壓及電流以完成電壓及電流閉迴路控制,其輸出電壓維持穩定而不受負載變動影響。另高頻變壓器低壓側採用雙繞組及功率轉換器並聯之結構,功率級電晶體之切換以交錯式方式控制,可分散低壓側電流以提升轉換效率。降壓模式操作時,本文採用相移式脈波寬度調變控制高壓側功率級電晶體之開關狀態,並使功率電晶體達成零電壓切換,降低切換損失。
本文以低價位之16位元數位信號處理器(DSP, TMS320LF2407A)為控制核心,其電壓及電流閉迴路控制及脈波寬度調變控制皆由軟體程式完成之。本文已完成500W之實體製作,低壓側蓄電池端電壓範圍為20~27V,直流鏈電壓額定為300V。結果顯示,於昇壓模式操作下,滿載效率為88%;而於降壓模式下,其效率為92%。
This thesis presents the design and implementation of a digital signal processor based bi-directional dc-dc power converter for battery charge and discharge. When power converters operate at boost mode, the low-voltage side battery will discharge and provide power for dc-link; while at buck mode, the high-voltage side dc-link will charge the battery. The output voltage can be steady with voltage and current feedback control. The high-frequency transformer which uses two windings in parallel with power converter, together with the use of interleave control will split input current and raise the efficiency of conversion. In buck mode, the power switches are operated by phase-shifted control with soft switching and thereby reduce switching loss.
The 16-bit digital signal processor, TMS320LF2407A, is used to implement the control function of the system. Experiments of 500W power converter are given. The terminal voltage range of battery is 20V~27V, and the dc-link voltage is 300V. The efficiency at full load of boost and buck modes are 88% and 92%, respectively.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌 謝 Ⅲ
目 錄 Ⅳ
符號說明 Ⅵ
圖表索引 Ⅷ
第一章 緒論 1
1.1 動機及目的 1
1.2 文獻探討 2
1.3 系統架構及本文特色 4
1.4 本文大綱 6
第二章 雙向直流-直流功率轉換器之模式分析 7
2.1 前言 7
2.2 昇壓模式之直流-直流功率轉換器分析及控制 7
2.2.1 昇壓模式之工作原理 7
2.2.2 昇壓模式之分析與控制 10
2.3 降壓模式之直流-直流功率轉換器分析及控制 14
2.3.1 降壓模式之工作原理 14
2.3.2 降壓模式之分析與控制 19
2.4 結語 24
第三章 雙向直流-直流功率轉換器之電路參數設計 25
3.1 前言 25
3.2 磁性元件設計 25
3.2.1 磁性材料 25
3.2.2 高頻變壓器設計 26
3.2.3 電感設計 27
3.2.4 集膚效應與鄰近效應之考量 29
3.3 電容的選擇 30
3.4 功率電晶體的選擇與盲時設定 31
3.5 結語 32
第四章 實體製作與實測 33
4.1 前言 33
4.2 硬體電路 33
4.2.1 數位信號處理器介面電路 33
4.2.2 電壓回授電路 34
4.2.3 電流回授電路 36
4.2.4 功率電晶體及其閘極驅動電路 37
4.3 軟體規劃 38
4.3.1 主程式規劃 38
4.3.2 昇壓模式之控制程式 40
4.3.3 降壓模式之控制程式 41
4.4 實測結果 42
4.5 結語 53
第五章 結論與建議 54
5.1 結論 54
5.2 建議 55
參考文獻 56
附 錄 A 系統參數 59
作者簡介 60
[1]S. J. Jang, T. W. Lee, W. C. Lee, and C. Y. Won, “Bi-directional dc-dc converter for fuel cell generation system,” Proceedings of 35th Annual IEEE Power Electronics Specialists Conference, PESC 04 , vol. 6, pp. 4722 - 4728, 2004.
[2]H. Xu, G. Ma, C. Sun, X. Wen, and L. Kong, “Implementation of a bi-directional dc-dc converter in FCEV,” Proceedings of Sixth International Conference on Electrical Machines and Systems , vol. 1, pp. 375 - 378, 2003.
[3]K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, “Bi-directional dc to dc converters for fuel cell systems,” Proceedings of IEEE Power Electronics Transportation, pp. 47-51, 1998.
[4]K. Wang, F. C. Lee, and J. Lai, “Operation principles of bi-directional full-bridge dc/dc converter with unified soft-switching scheme and soft-starting capability,” Proceedings of Applied Power Electronics Conference and Exposition, vol. 1, pp. 111-118, 2000.
[5]F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A new ZVS bidirectional dc-dc converter for fuel cell and battery application,” IEEE Transactions on Power Electronics, vol. 19, No. 1, pp. 54-65, 2004.
[6]M. Jain, M. Daniele, and P. K. Jain, “A bi-directional dc-dc converter topology for low power application,” IEEE Transactions on Power Electronics, vol. 15, No. 4, pp. 595-606, 2000.
[7]Y. Song and P. N. Enjeti, “A new soft switching technique for bi-directional power flow, full-bridge dc-dc converter,” Proceedings of Industry Applications Conference,37th IAS Annual Meeting, vol. 4, pp. 2314-2319, 2002.
[8]T. Mishima and E. Hiraki, “ZVS-SR bidirectional dc-dc converter for supercapacitor-applied automotive electric energy storage systems,” Proceedings of IEEE Vehicle Power and Propulsion, vol. 1, pp. 731-736, 2005.
[9]D. Xu, C. Zhao, and H. Fan, “A pwm plus phase-shift control bidirectional dc-dc converter,” IEEE Transactions on Power Electronics, vol. 19, No. 3, pp. 666-675, 2004.
[10]H. Li, F. Z. Peng, and J. S. Lawler, “A natural ZVS medium-power bidirectional dc-dc converter with minimum number of devices,” IEEE Transactions on Industry Application, vol. 39, No. 2, pp. 525-535, 2003.
[11]L. Yan and B. Lehman, “An integrated magnetic isolated two-inductor boost converter: analysis, design and experimentation,” IEEE Transactions on Power Electronics, vol. 20, No. 2, pp. 332-342, 2005.
[12]W. C. P. D. A. Filho and I. Barbi, “A comparison between two current-fed push-pull dc-dc converters - analysis, design and experimentation,” Proceedings of International Power Telecommunications Energy Conference, vol. 10, pp. 313-320, 1996.
[13]Y. Jang and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Transactions on Power Electronics, vol. 19, No. 2, pp. 169-175, 2004.
[14]P. J. Wolfs, “A current-sourced dc-dc converter derived via the duality principle from the half-bridge converter,” IEEE Transactions on Power Electronics, vol. 40, No. 1, pp. 139-144, 1993.
[15]G. C. Hsieh, J. C. Li, M. H. Liaw, J. P. Wang, and T. F. Hung, “A study on full-bridge zero-voltage-switched pwm converter: design and experimentation,” Proceedings of the IECON '93 International Conference, vol. 2, pp. 1281-1285, 1993.
[16]W. Chen, F. C. Lee, M. M. Jovanovic, and J. A. Sabate, “A comparative study of a class of full bridge zero-voltage-switched pwm converters,” Proceedings of Applied Power Electronics Conference and Exposition, vol. 2, pp. 893-899, 1995.
[17]簡鴻鈞,零電壓切換式直流電源供應器的設計與製作,國立台灣科技大學電機工程研究所碩士論文,民國九十一年。
[18]N. H. Kutkut, D. M. Divan, and R. W. Gascoigne, “An improved full-bridge zero-voltage switching PWM converter using a two-inductor rectifier,” IEEE Transactions on Industry Application, vol. 31, No. 1 pp. 119-126, 1995.
[19]H. J. Chiu, L. W. Lin, Y. C. Su, and S. C. Mou, “A phase-shifted zero voltage transition full-bridge converter with current doubler synchronous rectification,” Proceedings of SICE 2004 Annual Conference, vol. 1, pp. 60-65, 2004.
[20]Y. Jang and M. M. Jovanovic, “A new family of full-bridge ZVS converters,” IEEE Transactions on Power Electronics, vol. 19, No. 3, pp. 701-708, 2004.
[21]C. W. T. McLyman, Transformer and inductor design handbook, 3rd edition, Marcel Dekker, 2004.
[22]A. I. Pressman, Switching power supply design, McGraw-Hill, 1991.
[23]劉翼德,高電壓輸出之零電壓切換相移式全橋升壓型轉換器的分析及研製,國立台灣科技大學電子工程研究所碩士論文,民國九十三年。
[24]楊文賢,500V 250W全橋相移式升壓型軟性切換DC-DC轉換器之設計及實作,中原大學電機工程研究所碩士論文,民國九十三年。
[25]Arnold Co., Magnetic Powder Cores Manual.
[26]TMS320LF/C240X DSP Controllers, Reference Guide, System and Peripherals, 1997.
[27]HP Co., HCPL-7840 Technical Data.
[28]康宗仁,永磁式同步發電機之風力發電功率控制系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十四年。
[29]蔡宗志,以數位信號處理器為基礎之太陽能與風力複合發電系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十四年。
[30]陳瑩燦,具不斷電控制之永磁式同步電動機驅動系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十四年。
[31]TI Co., UCC27323 Technical Data.
[32]IR Co., IR2110 Application Note.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top