1.IPCC. IPCC Fourth Assessment Report: Climate Change 2007.
2.UNFCCC. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1997.
3.NOAA Earth System Research Laboratory, THE NOAA ANNUAL GREENHOUSE GAS INDEX 2015.
4.NOAA Earth System Research Laboratory, Recent Monthly Average Mauna Loa carbon dioxide. 2015.
5.Ichikawa S., Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis. Catalysis Today 1996. 27: p. 271-277.
6.Yanhui Zhang, Nan Zhang, Zi-Rong Tang, and Yi-Jun Xu, Graphene Transforms Wide Band Gap ZnS to a Visible Light Photocatalyst. The New Role of Graphene as a Macromolecular Photosensitizer. ACS NANO, 2012. 6(11): p. 9777-9789.
7.Aolan Wang, Xueshan Li., Yibo Zhao, Wei Wu, Jianfeng Chena, Hong Meng, Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances. Powder Technology, 2014. 261: p. 42-48.
8.Jin-Song Hu, Ling-Ling Ren, Yu-Guo Guo, Han-Pu Liang, An-Min Cao, Li-Jun Wan Prof. Dr. and Chun-Li Bai Prof. Dr., Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles. Angewandte Chemie International Edition, 2005. 44(8): p. 1269-1273.
9.Zhaoke Zheng, Baibiao Huang, Zeyan Wang, Meng Guo, Xiaoyan Qin, Xiaoyang Zhang, Peng Wang and Ying Dai, Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions. THE JOURNAL OF PHYSICAL CHEMISTRY C, 2009. 113(32): p. 14448-14453.
10.Michel Boudart, G. Djega-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions. 1984: Princeton University Press.
11.Akira Fujishima, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238: p. 37-38.
12.陳俊仁, 銀修飾奈米二氧化鈦增強可見光吸收度之研究. 2005.
13.Phairat Usubharatana, Dena McMartin, Amornvadee Veawab, Paitoon Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Ind. Eng. Chem. Res., 2006. 45: p. 2558-2568.
14.A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009. 38: p. 253-278.
15.Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414: p. 338-344.
16.Robyn Obert, Bakul C. Dave, Enzymatic Conversion of Carbon Dioxide to Sol-Gel : Enhanced Methanol Production in Silica. J. Am. Chem. Soc, 1999. 121: p. 12192-12193.
17.Computer Science and Artificial Intelligence Laboratory, Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE Science, 2010. 330: p. 1787-1797
18.Getoff T., Radiation chemistry and the environment. Physics and Chemistry, 1999. 54: p. 377-384.
19.Fujiwara, H., et al., Visible-light induced photofixation of carbon dioxide into aromatic ketones and benzyl halides atalysed by CdS nanocrystallites J. Am. Chem. Soc, 1997. 2: p. 317-321.
20.R. Angamuthu, P. Byers, M. Lutz, A. L. Spek, E. Bouwman, Electrocatalytic CO2 conversion to oxalate by a copper Science, 2010. 327(1787-1797).
21.Kaneco, S., et al., Electrochemical Reduction of CO2 in copper particle-suspended methanol. Chemical Enginnering Journal, 2006. 119: p. 107-112.
22.Amatore C., J. M. Saveant, Machanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. Journal of the American Chemical Society, 1981. 103: p. 5021-5023.
23.Halmann M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 1978. 275: p. 115-116.
24.Rajeshwar K., Photoelectrochemistry and the environment. Journal of Applied Electrochemistry, 1995. 25: p. 1067-1082.
25.I-Hsiang Tseng, Wan-Chen Chang, Jeffrey C. S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 2002. 37: p. 37-48.
26.J. M. Smith, Hendrick Van Ness, Michael Abbott, Introduction to Chemical Engineering Thermodynamics (The Mcgraw-Hill Chemical Engineering Series). 2004.
27.Akira Fujishima, Tata N. Rao, Donald A. Tryk, Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1): p. 1-21.
28.Yoneyama, H., Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catalysis Today, 1997. 39: p. 169-175.
29.Tooru Inoue, Satoshi Konishi and Kenichi Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. 1979. 277: p. 637-638.
30.Tennakone, K., Photoreduction of carbonic acid by mercury coated n-titanium dioxide. Solar Energy Materials, 1984. 10: p. 235-238.
31.M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A screening for the photoreduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity. Applied Catalysis B: Environmental, 1999. 23: p. 169-174.
32.A. Henglein, M. Gutierrez, C. H. Fischer, Photochemistry of Colloidal Metal Sulfides 6. Kinetics of Interfacial Reactions at ZnS-Particles. Berichte der Bunsengesellschaft für physikalische Chemie, 1984. 88(2): p. 170-175.
33.Ichikawa, S., Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis. Energy Conversion and Management, 2000. 36(6-9): p. 613-616.
34.Katsuhiko Hirano, Tamomi Yatsu, Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. Journal of Photochemistry and Photobiology A: Chemistry, 1992. 64(2): p. 255-258.
35.H. Yamashita, N. Kamada, M. Anpo, Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates, 1994. 20(8): p. 815-823.
36.Masakazu Anpo, Yuichi Ichihashi, Shaw Eharab, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 1995. 396(1-2): p. 21-26.
37.T. Mizuno, K. Ohta, A. Saji and H. Noda, Photocatalytic Reduction of CO2 with Dispersed TiO2/Cu Powder Mixtures in Supercritical CO2. Chemistry Letters 1994: p. 1533-1536.
38.Kyoko Kitamura Bando, Hitoshi Kusama, Kiyomi Okabe, Hironori Arakawa, In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2. Kitamura and Hironon, 1997. 165(1-2): p. 391-409.
39.Natarajan Sasirekha, Kannan Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 2006. 62(1-2): p. 169-180.
40.Z. Zhang, T. Shimizu, L. J. Chen, S. Senz, U. Goesele, Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst. Adv. Mater., 2009. 21: p. 4701.
41.B. Das, S. P. McGinnis, Novel template-based semiconductor nanostructures and their applications. Appl. Phys. A., 2000. 71: p. 681.
42.Davidson W. L., X-ray diffraction evidence for ZnS formation in zinc activated rubber vulcanizates. Phys. Rev., 1948. 74: p. 116-117.
43.Yeh C. Y., Lu Z. W., Froyen S, Zunger A, Zinc blende wurtzite polytypism in semiconductors. Phys. Rev. B, 1992. 46: p. 10086-10087.
44.Wenqing Fan, Qinghong Zhang and Ye Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, 2013. 15(8): p. 2632-2649.
45.M Bredol, J. Merikhi, ZnS precipitation: morphology control. Journal of Materials Science, 1998. 33(2): p. 471-476.
46.Matthias Labrenz, Tamara Thomsen-Ebert, Benjamin Gilbert, Susan A. Welch, Kenneth M. Kemner, Graham A. Logan, Roger E. Summons, Gelsomina De Stasio, Philip L. Bond, Barry Lai, Shelly D. Kelly, Jillian F. Banfield, Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. J. Am. Chem. Soc., 2003. 125(36): p. 11100-11105.
47.P. Calandra, M. Goffredi, V. Turco Liveri, Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 160(1): p. 9-13.
48.S. J. Xu, S. J. Chua., B. Liu, L. M. Gan, C. H. Chew, G. Q. Xu, Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment. Applied Physics Letters 1998. 73: p. 478.
49.W. Tang, D. C. Cameron, Electroluminescent zinc sulphide devices produced by sol-gel processing. Thin Solid Films, 1996. 280(1-2): p. 221-226.
50.B. Bhattacharjee, K. IakoubovskII, A. Stesmans, S. Chaudhuri, Synthesis and characterization of sol-gel derived ZnS : Mn2+ nanocrystallites embedded in a silica matrix. Bulletin of Materials Science, 2002. 25(3): p. 175-180.
51.L. M. Gan, B. Liu, C. H. Chew, S. J. Xu, S. J. Chua, G. L. Loy and G. Q. Xu, Research Article Previous Article Next Article Table of Contents Enhanced Photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemulsion. Langmuir, 1997. 13(24): p. 6427-6431.
52.Feng Huang , Hengzhong Zhang, Jillian F. Banfield, The Role of Oriented Attachment Crystal Growth in Hydrothermal Coarsening of Nanocrystalline ZnS. J. Phys. Chem. B,, 2003. 107(38): p. 10470-10475.
53.Feng Huang , Hengzhong Zhang and Jillan F. Banfield, Two-Stage Crystal-Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS. Nano Letters, 2003. 3(3): p. 373-378.
54.L. Meerabai Devi, Devendra P. S. Negi, Effect of starting pH and stabilizer/metal ion ratio on the photocatalytic activity of ZnS nanoparticles. Materials Chemistry and Physics, 2013. 141(2-3): p. 797-803.
55.M. Muruganandham, Evelina Repo, Mika Sillanpää, Yoshihumi Kusumoto, Md. Abdulla-Al-Mamun, Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye. Journal of Photochemistry and Photobiology A: Chemistry, 2010. 216(2-3): p. 133-141.
56.Zhang, S., Preparation of controlled-shape ZnS microcrystals and photocatalytic property. Ceramics International, 2014. 40(3): p. 4553-4557.
57.Ondřej Kozák, Kamila Kočí, Mariana Klementová, Preparation and characterization of ZnS nanoparticles deposited on montmorillonite. Journal of Colloid and Interface Science, 2010. 352(2): p. 244-251.
58.Kamila Kočí, Lenka Matejova, Ondřej Kozák, Libor Čapek, Václav Valeš, Martin Reli, Petr Praus, Klára Šafářová, Andrzej Kotarba, Lucie Obalová, ZnS/MMT nanocomposites: The effect of ZnS loading in MMT on the photocatalytic reduction of carbon dioxide. Applied Catalysis B: Environmental, 2014. 158-159: p. 410-417.
59.L. Obalová, M. Šihor , P. Praus, M. Reli, K. Kočí, Photocatalytic and photochemical decomposition of N2O on ZnS-MMT catalyst. Catalysis Today, 2014. 230: p. 61-66.
60.Paria S, Khilar K., A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Adv Colloid Interface Sci., 2004. 110(3): p. 75-95.
61.Mark Weller, Tina Overton, Jonathan Rourke and Fraser Armstrong, Inorganic Chemistry. Sixth ed. 2014: UNIVERSITY OF LIVERPOOL.
62.Huogen Yu, Jiaguo Yu, Shengwei Liu and Stephen Mann, Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres. Chem. Mater., 2007. 19(17): p. 4327-4334.
63.Zhenghua Wang, Hui Wang, Lingling Wang, Ling Pan, One-pot synthesis of single-crystalline Cu2O hollow nanocubes. Journal of Physics and Chemistry of Solids, 2009. 70(3-4): p. 719-722.
64.Mingzhen Wei, Ning Luna, Xicheng Mab, Shulin Wen, A simple solvothermal reduction route to copper and cuprous oxide. Materials Letters, 2007. 61(11-12): p. 2147-2150.
65.Hongdan Zhang, Fuyang Liu, Benxian Li, Jiasheng Xu, Xudong Zhao and Xiaoyang Liu, Microwave-assisted synthesis of Cu2O microcrystals with systematic shape evolution from octahedral to cubic and their comparative photocatalytic activities. RSC Advances, 2014. 4(72): p. 38059-38063.
66.Xiaoxia Zhang, Jimei Song, Jian Jiao, Xuefeng Mei, Preparation and photocatalytic activity of cuprous oxides. Solid State Sciences, 2010. 12(7): p. 1215-1219.
67.Lei Huang, Feng Peng, Hao Yu, Hongjuan Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sciences, 2009. 11(1): p. 129-138.
68.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
69.Y. F. Chan, C. Y. Chen, Preparation of High-dispersed Graphene. 工業材料雜誌, 2012. 304: p. 82-87.
70.A. K. Geim, Graphene: Status and Prospects. Science, 2009. 324(5934): p. 1530-1534.
71.S. J. Huang, S. L. Kuo, Y. C. Liu, Y. C. Yeh, The New Carbon Age - from Carbon Nanotube to Graphene. 工業材料雜誌, 2011. 291: p. 93-103.
72.William S. Hummers Jr., Richard E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc., 1958. 80(6): p. 1339-1339.
73.Yuxi Xu, Gaoquan Shi, Assembly of chemically modified graphene: methods and applications. Journal of Materials Chemistry, 2011. 21(10): p. 3311-3323.
74.Yan Feng, Ningning Feng, Guoying Zhang and Guixiang Du, One-pot hydrothermal synthesis of ZnS–reduced graphene oxide composites with enhanced photocatalytic properties. CrystEngComm, 2014. 16(2): p. 214-222.
75.M. Sookhakian, Y. M. Amin, W. J. Basirun, Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue. Applied Surface Science, 2013. 283: p. 668-677.
76.Zeng Bin, Chen Xiaohua, Tang Qianxiang, Chen Chuansheng, Hu Aiping, Ordered mesoporous necklace-like ZnS on graphene for use as a high performance photocatalyst. Applied Surface Science, 2014. 308(30): p. 321-327.
77.Xuelian Yu, Guangjin Zhang, Hongbin Cao, Xiaoqiang An, Yun Wang, Zhongjun Shu, Xiaoli An and Fei Hua, ZnO@ZnS hollow dumbbells–graphene composites as high-performance photocatalysts and alcohol sensors. NewJ. Chem., 2012. 36: p. 2593-2598.
78.MingYan Wang, JunRao Huang, ZhiWei Tong, WeiHua Lic, Jun Chen, Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation. Journal of Alloys and Compounds, 2013. 568: p. 26-35.
79.A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant. Journal of Physics and Chemistry of Solids, 2013. 74(4): p. 635-640.
80.Xiaoqiang An, Kimfung Li, Junwang Tang, Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem., 2014. 7(4): p. 1086-1093.
81.W.D. Callister, D. G. Rethwisch, Materials science and engineering : an introduction. 2007: Wiley
82.L.V. Azaroff, M. J. Buerger, The power Method in X-Ray Crystallography. 1970: McGraw-Hill.
83.B.D. Cullity, S. R. Stock, Elements of X-Ray Diffraction. 2001: Prentice Hall.
84.Hufner, S., Photoelectron Spetroscopy : Principles and Application. 2 ed. 1996: Springer.
85.J. C. Vickerman, Surface Analysis - The Principle Techniques. 1997: John Wiley&Sons, New York.
86.J. R. Anderson, K. C. Pratt, Introduction to characterization and testing of catalysts. 1985: ACADEMIC PRESS, New York.
87.陳俊龍, AES/ESCA 表面分析技術於工業材料上的應用. 工業材料, 1995. 106: p. 69-77.88.D. E. Newbury, D. C. Joy, P. Echlin, C. Fioriand Goldstein, Advanced Scanning Electron Microscopy and X-ray Microanalysis. 1986.
89.Joseph Goldstein, David Joy, Charles Lyman, Patrick Echlin, Eric Lifshin, Linda Sawyer, and Joseph Michael,, Scanning Electron Microscopy and X-ray Microanalysis. 2003: Kluwer Academic/Plenum Publishers.
90.David B. Williams and C. B. Carter, Transmission electron microscopy. Plenum Press.
91.Wendiandt and Hecht, Reflectance Spectroscopy. 1966, New York: Wiley Interscience.
92.J. R. Anderson, K. C. Pratt, Introduction to Characterization and Testing of Catalysis. 1985: Academic Press.
93.S. Coluccia, Photocatalysis and environment trends and applications. Vol. 193-195. 1988, Netherlands: Kluwer Academic Publishers.
94.K. D. Mielenz, Optical Radiation Measurement. 1982: Academic Press.
95.Arthur Schweiger, Gunnar Jeschke, Principles of Pulse Electron Paramagnetic Resonance. 1 ed. 2001: OXFORD UNIVERSITY PRESS.
96.Calvin D. Jaeger, Allen J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J. Phys. Chem. B,, 1979. 83(24): p. 3146-3152.
97.Ederlinda C. Pascual and Chahan Yeretzian, Characterization of Free Radicals in Soluble Coffee by Electron Paramagnetic Resonance Spectroscopy. J. Agric. Food Chem, 2002. 50: p. 6114-6122.
98.Werner U. Boeglin, Electron Spin Resonance. 2011.
99.Ryan J. Elias, Mogens L. Andersen, Leif H. Skibsted and Andrew L. Waterhouse, Identification of Free Radical Intermediates in Oxidized Wine Using Electron Paramagnetic Resonance Spin Trapping. J. Agric. Food Chem., 2009. 57(10): p. 4359-4365.
100.Sankarapandi, S., Zweier, Evidence against the Generation of Free Hydroxyl Radicals from the Interaction of Copper,Zinc-Superoxide Dismutase and Hydrogen Peroxide. Journal of Biological Chemistry, 1999. 274( 49): p. 34576-34583.
101.Chromedia Analytical Sciences, Interoduction to Capollary GC Injection Techniques. 2014.
102.Valco Instruments Co. Inc., Pulsed Discharge Detector Model D-4-I-VA38-R Instruction Manual. 2015: Valco Instruments Co. Inc.
103.陳志賢, 奈米可見光V/TiO2觸媒之合成與物性分析. 2003.
104.A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J-M Herrmann, Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B : Environmental, 2001. 31: p. 145.
105.H. Yoneyama, Y. Toyoguchi and H. Tamura, Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solution. Journal of Physical Chemistry, 1972. 76: p. 3460-3464.
106.Swarthmore, Powder diffraction File No. 05-0566. in JCPDS--International Center for Diffraction Data. 1997.
107.D. Amaranatha Reddy, Rory Ma, Myong Yong Choi, Tae Kyu Kim, Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Applied Surface Science, 2015. 324: p. 725-735.
108.Zeng Bin, Chen Xiaohua, Tang Qianxiang, Chen Chuansheng, Hu Aiping, Ordered mesoporous necklace-like ZnS on graphene for use as a high performance photocatalyst. Applied Surface Science, 2014. 308: p. 321-327.
109.Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell, NIST X-ray Photoelectron Spectroscopy Database, 2012.
110.Jun Zhang, Jiaguo Yu, Mietek Jaroniec, Jian Ru Gong, Noble Metal-Free Reduced Graphene Oxide-ZnxCd1–xS Nanocomposite with Enhanced Solar Photocatalytic H2-Production Performance. Nano Lett., 2012. 12(9): p. 4584-4589.