跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/17 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張永宏
研究生(外文):Yung-Hung Chang
論文名稱:微波誘導大豆油及廢食用油快速轉酯化之研究
論文名稱(外文):Microwave enhanced transesterification of soybean oil and waste cooking oil
指導教授:蕭明謙
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:134
中文關鍵詞:生質柴油轉酯化反應微波共溶劑子液體動力
外文關鍵詞:Biodieseltransesterificationmicrowaveco-solventionic liquidkinetics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:917
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前石化燃料日漸減少,因此,開發再生能源勢在必行。生質柴油又稱為脂
肪酸甲酯,主要是透過轉酯化反應製得。本研究使用大豆油及廢食用油作為反應
物,透過開放式及密閉式微波方式進行轉酯化反應,分別利用均相及非均相觸媒
催化製造生質柴油。
以大豆油為原料,在開放式微波下,使用奈米氧化鈣進行催化反應,最佳反
應條件為:醇油莫耳比7:1,3 wt%的奈米氧化鈣,在65℃下反應1 小時,生質柴
油轉化率可達96.63%。在密閉式微波下,考量到醇油不相溶的因素,利用兩種不
同方式進行反應,一是使用超音波將反應物混合後進行密閉微波反應,另一是添
加共溶劑使反應物能充分混和。使用超音波混合下最佳條件為:醇油莫耳比6:1,
1 wt%的氫氧化鈉,反應溫度60℃,反應時間2 分鐘,生質柴油轉化率能有效的達
到97.68%。而添加共溶劑最佳條件為:醇油莫耳比12:1,氫氧化鈉添加1 wt%,
溫度為60℃反應2 分鐘,生質柴油轉化率為97.36%。從結果可知,不論是利用開
放式微波或密閉式微波,使用大豆油作為原料,生質柴油轉化率皆能夠有效符合
台灣CNS 15072 之96.5%標準值。
以廢食用油為原料的情況,利用兩種不同的方式進行反應,其一是添加共溶
劑,另一是添加共溶劑並使用超音波促進混合。在添加共溶劑的情況下,第一段
酸催化酯化反應最佳條件為醇油莫耳比9:1,硫酸添加量1 wt %,溫度在60℃下反
應7.5 分鐘,可將含有酸價為4.36 mg KOH/g 之廢食用油降至2 mg KOH/g,再利
用第二段鹼催化轉酯化反應製造生質柴油,總反應時間為9 分鐘,生質柴油轉化
率可達97.38%。另外在添加共溶劑並使用超音波促進混合方面,酸催化條件為醇
油莫耳比9:1,硫酸添加量1 wt%,先利用超音波混合1 分鐘後,再使用微波進行
反應,反應溫度為60℃,反應時間5 分鐘,能有效的將廢食用油之酸價降低至2 mg
KOH/g,接著進行鹼催化反應,反應花費總時間為8 分鐘,生質柴油轉化率可達
99.01%。此兩種結果,可有效將廢食用油製造生質柴油並符合台灣CNS 15072 之
96.5%標準值。
製備四種不同酸性離子液體在密閉微波下催化大豆油與甲醇進行轉酯化反應
製造生質柴油。研究結果顯示,微波功率設定在300 W,當醇油莫耳比為15:1,
離子液體添加量4 wt%,反應溫度於150℃,反應60 分鐘,[SO3H-BMIM] [HSO4]
具有較好的催化活性,且生質柴油轉化率可達97%,此轉酯化反應之活化能為
18.21 kJ/mole,離子液體容易與產物分離,具有很好的穩定性,且對環境友好。
本研究利用大豆油與廢食用油製造生質柴油皆能夠符合台灣CNS 15072 之
96.5%標準值,使用微波的方式可有效的縮短反應時間,增加轉化率,並減少能耗,
達到節能減碳的目的。

The fossil fuels is limited, therefore, the development of renewable energy is
imperative. Biodiesel is defined as the fatty acid methyl esters made by
transesterification of a refined oil or waste cooking oil. In this study, the use of soybean
oil and waste cooking oil as a reactant, through open and closed method to microwave
transesterification reaction, the use of homogeneous and heterogeneous catalysis
production biodiesel.
In soybean oil as raw material, in an open microwave, the use of nano calcium
oxide catalytic reaction, the optimum conditions was as follows: molar ratio of
methanol to oil is 7:1 with CaO concentration of 3 wt% and reaction time for 1 hour.
The conversion of soybean oil into biodiesel was achieved 96.63% for 1 hour. In closed
microwave, oil and alcohols are not totally miscible, so their reaction takes place at the
interface and it is a very slow process, therefore, used of two different ways to reaction,
first, the use of ultrasonic to be a mixture, and the other was to added solvent. The used
ultrasonic optimum conditions was as follows: molar ratio of methanol to oil is 6:1 with
NaOH concentration of 1 wt% and reaction time for 2 minutes, conversion was reached
97.68%. Added co-solvents the optimum conditions was as follows: molar ratio of methanol to oil is 12:1 with NaOH concentration of 1 wt% and reaction time for 2
minutes, biodiesel conversion of 97.36%. In the presence results, whether open or
closed microwave, the use of soybean oil as raw materials, biodiesel conversion are
conformed the Taiwan CNS 15072 standard value of 96.5%.
Waste cooking oil as raw materials, the use of two different ways to reaction, one
of which is to added co-solvents, and the other is to added co-solvents and the use of
ultrasound to promote mixed. Added co-solvents, the high acid value (4.36 mg KOH /g)
of waste cooking oil can be reduced to less than 2 mg KOH/g by acid catalyzed reaction
for 7.5 minutes reaction time. The second step by transesterification reaction with a total
reaction time of 9 minutes, the biodiesel conversion reached 97.38%. Besides, added
co-solvents and the use of ultrasound to promote mixed, the acid-catalyzed conditions
was as follows: ultrasound after 1 minutes, molar ratio of methanol to oil is 9:1 with
H2SO4 concentration of 1 wt% and microwave reaction temperature to 60 ℃, reaction
time 5 minutes, the acid value of waste cooking oil decreased to 2 mg KOH/g, then,
followed by alkali-catalyzed reaction, the reaction time to spend a total of 8 minutes,
and biodiesel conversion up to 99.01%.
Preparation of four different acidic ionic liquids under closed microwave and
catalyze soybean oil with methanol for transesterification to product biodiesel. The
results showed that microwave power at 300 W, soybean oil-methnaol molar ratio of
15:1, ionic liquid concentration of 4 wt%, reaction temperature at 150 ℃, reaction for
60 minutes, [SO3H-BMIM] [HSO4] with better catalytic activity, and biodiesel
conversion rate of up to 97%. Transesterification reaction of the activation energy for
the 18.21 kJ / mole, the product of ionic liquids with easy separation, has good stability,
and friendly to the environment.
In this study, soybean oil and waste cooking oil production biodiesel to conformed
Taiwan CNS 15072 standard value of 96.5%. The microwave irradiation method is
provides efficient reduce the reaction time, increase in conversion and reduced the
energy consumption, to achieve of energy saving and carbon reduction.

摘 要.................................................... I
ABSTRACT............................................... III
誌謝.................................................... VI
目錄................................................... VII
表目錄................................................... X
圖目錄.................................................. XI
一、前言................................................. 1
1.1 研究動機與目的....................................... 1
二、文獻回顧............................................. 4
2.1 生質柴油............................................. 4
2.1.1 生質柴油簡介....................................... 4
2.1.2 生質柴油的製造方法................................. 5
2.1.3 生質柴油在台灣之發展............................... 7
2.1.4 生質柴油之規範..................................... 8
2.2 轉酯化反應.......................................... 11
2.2.1 酸、鹼和?¯頎迨④狨?.............................. 11
2.2.2 均勻相和非均勻相轉酯化反應........................ 16
2.3 微波與超音波之原理及轉酯化相關研究.................. 18
2.3.1 微波原理.......................................... 18
2.3.2 微波應用在轉酯化反應之相關研究.................... 18
2.3.3 超音波原理........................................ 21
2.3.4 超音波應用在轉酯化反應之相關研究.................. 23
2.4 離子液體............................................ 23
2.4.1 離子液體簡介...................................... 23
2.4.2 離子液體的性質及合成.............................. 24
2.4.3 離子液體在轉酯化反應的相關研究.................... 26
三、實驗方法及分析...................................... 31
3.1 實驗材料............................................ 31
3.2 實驗方法及步驟...................................... 31
3.2.1 大豆油與廢食用油酸價、皂化價之測定................ 31
3.2.2 在微波幅射下使用奈米氧化鈣將大豆油轉化成生質柴油.. 32
3.2.3 使用密閉微波促進大豆油轉酯化反應.................. 32
3.2.4 添加共溶劑在密閉微波下促進大豆油轉酯化反應........ 32
3.2.5 密閉微波下添加共溶劑進行兩段式反應將廢食用油轉換成生質柴油.33
3.2.6 結合微波及超音波並添加共溶劑將廢食用油轉換成生質柴油.33
3.2.7 酸性離子液體合成.................................. 33
3.2.8 使用離子液體催化進行轉酯化反應.................... 34
2.3.9 離子液體催化將大豆油轉化為生質柴油之動力研究...... 35
3.3 實驗儀器............................................ 35
3.3.1 微波反應器(Microwave)............................. 35
3.3.2 超音波反應器(Ultrasonic).......................... 35
3.3.3 氣相層析儀(Gas Chromatograph)-FID................. 35
3.2.4 氣相層析儀(Gas Chromatograph)-MS.................. 36
3.2.5 傅立葉轉換紅外線光譜儀-FTIR....................... 36
3.4 樣品分析............................................ 41
3.4.1 生質柴油之分析.................................... 41
3.4.2 離子液體之分析.................................... 41
四、結果與討論.......................................... 42
4.1 在微波幅射下使用奈米氧化鈣將大豆油轉換成生質柴油.... 42
4.2 使用密閉式微波促進大豆油轉酯化反應.................. 55
4.3 添加共溶劑在密閉微波下促進大豆油轉酯化反應.......... 65
4.4 密閉微波下添加共溶劑進行兩段式反應將廢食用油轉換成生質柴油.76
4.5 結合微波及超音波並添加共溶劑將廢食用油轉換成生質柴油 89
4.6 使用離子液體催化轉酯化反應.......................... 99
4.7 離子液體催化將大豆油轉化為生質柴油之動力研究....... 109
五、結論與建議......................................... 120
參考文獻............................................... 122

Abreu, F. R., Alves, M. B., Macˆedo, C. C. S., Zara, L. F., Suarez, A. Z., 2005. Newmulti-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reaction. Journal of Molecular Catalysis A: Chemical, 227, 263-267.
Adams, C., Peters, J. F., Rand, M. C., Schroer, B. J., Ziemke, M. C., 1983. Investigation of soybean oil as a diesel fuel extender: endurance tests. Journal of the American Oil Chemists'' Society, 60, 1574-1579.
Alt1parmak, D., Keskin, A., Koca, A., Guru, M., 2007. Alternative fuel properties of tall oil fatty acid methyl ester–diesel fuel blends. Bioresource Technology, 98, 241-246.
Antczak, M. S., Kubiak, A., Antczak, T., Bielecki, S., 2009. Enzymatic biodiesel synthesis – key factors affecting efficiency of the process. Renewable Energy, 34, 1185-1194.
Azcan, N., Danisman, A., 2007. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel, 86, 2639-2644.
Azcan, N., Danisman, A., 2007. Microwave assisted transesterification of rapeseed oil. Fuel, 87, 1781-1788.
Bala, B.K., 2005. Studies on biodiesels from transformation of vegetable oils for diesel engines. Energy Science & Technology, 15, 1-43.
Barnard, T. M., Leadbeater, N. E., Boucher, M. B., Stencel, L. M., Wilhite, B. A., 2007. Continuous-flow preparation of biodiesel using microwave heating. Energy & Fuel, 21, 1777-1781.
Billaud, F.; Dominguez, V.; Broutin, P.; Busson,C., 1995. Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil. Journal of the American Oil Chemists’ Society, 72, 1149-1154.
Bonh?鏒e, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K., Gr?鱸zel, M., 1996. Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 35, 1168-1178.
Boocock, D. G. B., Konar, S. K., Sidi, H., 1996. Phase diagrams for oil/methanol/ether mixtures. Journal of the American Oil Chemists'' Society, 73, 1247-1251.
Bournay, L., Casanave, D., Delfort, B., Hillion, G., Chodorge, J. A., 2005. New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today, 106, 190-192.
Canakci, M., 2007. The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98, 183-190.
Cao, P., Dube, M. A., Tremblay, A.Y., 2008. Methanol recycling in the production of biodiesel in a membrane reactor. Fuel, 87, 825-833.
Colucci, J. A., Borrero, E. E., Alape, F., 2005. Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. Journal of the American Oil Chemists’ Society, 82, 525-530.
Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., Ishizaki, A., 2001. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry, 37, 65-71.
Deetlefs, M., Seddon, K. R., 2003. Improved preparations of ionic liquids using microwave Irradiation. Green chemistry, 5, 181–186.
Demirbas, A., 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management, 44, 2093-2109.
Ding, J., Armstrong, D. W., 2005. Chiral ionic liquids: synthesis and applications. Chirality, 17, 281-292.
Dorado, M. P., Ballesteros, E., Lopez, F. J., Mittelbach, M., 2004. Optimization of alkali-catalyzed transesterification of brassica carinata oil for biodiesel production. Energy & Fuels, 18, 77-83.
Du, W., Li, W., Sun, T., Chen, X., Liu, D., 2008. Perspectives for biotechnological production of biodiesel and impacts. Applied Microbiology and Biotechnology, 79, 331-337.
Encinar, J. M., Gonzalez, J. F., Rodriguez, J. J., Tejedor, A., 2002. Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. oils with ethanol. Energy & Fuels, 16, 443-450.
Fukuda, H., Kondo, A., Noda, H., 2001. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92, 405-416.
Furuta, S., Matsuhashi, H., Arata, K., 2006. Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor. Biomass & Bioenergy, 30, 870-873.
Georgogianni, K. G., Kontominas, M. G., Tegou, E.; Avlonitis, D., Gergis, V., 2007. Biodiesel production: reaction and process parameters of alkali-catalyzed transesterification of waste frying oils. Energ Fuel, 21, 3023-3027.
Ghadge, S. V., Raheman, H., 2005. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28, 601-605.
Goering, C.E., Fry, B.G., 1984. Engine durability screening test of a diesel oil/soy oil/alcohol microemulsion fuel. Journal of the American Oil Chemists'' Society, 61, 1627-1632.
Groisman, Y., Gedanken, A., 2008. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. The Journal of Physical Chemistry C, 112, 8802-8808.
Ha, S. H., Lan, M. N., Lee, S. H., Hwang, S. M., Koo, Y. M., 2007. Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme and Microbial Technology, 41, 480-483.
Hagiwara, R., Ito, Y., 2000. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. Journal of Fluorine Chemistry, 105, 221-227.
Han, M., Yi, W., Wu, Q., Liu, Y., Hong, Y., Wang, D., 2009. Preparation of biodiesel from waste oils catalyzed by a br?幯sted acidic ionic liquid. Bioresource Technology, 100, 2308-2310.
Hanh, H. D., Dong, N. T., Starvarache, C., Okitsu, K., Maeda, Y., Nishimura, R., 2008. Methanolysis of triolein by low frequency ultrasonic irradiation. Energy Conversion and Management, 49, 276-280.
Hernando, J., Leton, P., Matia, M. P., Novella, J. L., Alvarez-Builla, J., 2007. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel, 86, 1641-1644.
Huang, Y. H., Wu, J. H., 2008. Analysis of biodiesel promotion in Taiwan. Renewable and Sustainable Energy Reviews, 12, 1176–1186.
Huaping, Z., Zongbin, W., Yuanxiong, C., Ping, Z., Shijie, D., Xiaohua, L., Zongqiang, M., 2006. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chinese Journal of Catalysis, 27, 391-396.
Huayang, He., Shiyao, Sun., Tao, Wang., Shenlin, Zhu., 2007. Transesterification Kinetics of Soybean Oil for Production of Biodiesel in Supercritical Methanol. Journal of the American Oil Chemists’ Society, 84, 399-404.
Islam, M.N., Islam, M.N., Beg, M.R.A., 2004. The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh. Bioresource Technology, 92, 181-186.
Ji, J., Wang, J., Li, Y., Yu, Y., Xu, Z., 2006. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 44, 411-414.
Kiss, A. A., Omota, F., Dimian, A. C., Rothenberg, G., 2006. The heterogeneous advantage: biodiesel by catalytic reactive distillation. Topics in Catalysis, 40, 141-150.
Lapuerta, M., Rodriguez-Fernandez, J., Agudelo, J. R., 2008. Diesel particulate emissions from used cooking oil biodiesel. Bioresource Technology, 99, 731-740.
Leadbeater, N. E., Barnard, T. M., Stencel, L. M., 2008. Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heating. Energy & Fuels, 22, 2005-2008.
Leadbeater, N. E., Stencel, L. M., 2006. Easy preparation of biodiesel using microwave heating. Energy & Fuel, 20, 2281-2283.
Lertsathapornsuk, V., Pairintra, R., Aryusuk, K., Krisnangkura, K., 2008. Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 Kw diesel generator. Fuel Processing Technology, 89, 1330-1336.
Leung, D. Y. C., Guo, Y., 2006. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Processing Technology, 87, 883-890.
Leveque1, J. M., Estager, J., Draye, M., Cravotto, G., Boffa, L., Bonrath, W., 2007. Synthesis of ionic liquids using non conventional activation methods: an overview. Monatshefte fu¨ r Chemie, 138, 1103-1113.
Liang, X., Gong, G., Wu, H., Yang, J., 2009. Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst. Fuel, 88, 613-616.
Lin, S. S., Wu, C. H., Sun, M. C., Sun, C. M., Ho, Y. P., 2005. Microwave-assisted enzyme-catalyzed reactions in various solvent systems. Journal of the American Society for Mass Spectrometry, 16, 581–588.
Lingfeng, C., Guomin, X., Bo, X., Guangyuan, T., 2007. Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts. Energy & Fuel, 21, 3740–3743.
Liu, J. F., Jonsson, J. A., Jiang, G. B., 2005. Application of ionic liquids in analytical chemistry. Trends in Analytical Chemistry, 24, 20-27.
Liu, X., He, H., Wang, Y., Zhu, S., Piao, X., 2008. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87, 216-221.
Liu, X., Piao, X., Wang, Y., Zhu, S., He, H., 2008. Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel, 87, 1076-1082.
Lopez Granados, M., Zafra Poves, M. D., Martin Alonso, D.; Mariscal, R., Cabello Galisteo, F., Moreno Tost, R., Santamaria, J., Fierro, J. L. G., 2007. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B, 73, 317-326.
Lotero, E., Liu, T., Lopez, D. E., Suwannakarn, K., Bruce, D. A., Goodwin, Jr. J.G., 2005. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44, 5353-5363.
Ma, F., Hanna, M. A., 1999. Biodiesel production: a review. Bioresource Technology, 70, 1-15.
Marchetti, J. M., Miguel, V. U., Errazu, A. F., 2007. Heterogeneous esterification of oil with high amount of free fatty acids. Fuel, 86, 906-910.
Marsh, K.N., Boxall, J.A., Lichtenthaler, R., 2004. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilibria, 219, 93-98.
Mazzocchia, C., Modica, G., Kaddouri, A., Nannicini, E., 2004. Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Comptes Rendus Chimie, 7, 601-605.
Meher, L. C., Sagar, D. V., Naik, S. N., 2006. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10, 248-268.
Neto, B. A. D., Alves, M. B., Lapis, A. A. M., Nachtigall, F. M., Eberlin, M. N., Dupont, J., Suarez, P. A. Z., 2007. 1-n-Butyl-3-methylimidazolium tetrachloro-indate (BMI•InCl4) as a media for the synthesis of biodiesel from vegetable oils. Journal of Catalysis, 249, 154-161.
Oliveira, D. D., Filho, I. D. N., Luccio, M. D., Faccio, C., Rosa, C. D., Bender, J. P., Lipke, N., Amroginski, C., Dariva, C., Oliveira, J. V. D., 2005. Kinetics of enzyme-catalyzed alcoholysis of soybean oil in n-hexane. Applied Biochemistry and Biotechnology, 121-124, 231-241.
Perin, G., Alvaro, G., Westphal, E., Viana, L. H., Jacob, R.G., Lenardao, E. J., D’Oca, M. G. M., 2008. Transesterification of castor oil assisted by microwave irradiation. Fuel, 87, 2838-2841.
Reddy, C. R. V., Oshel, R., Verkade, J. G., 2006. Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy & Fuel, 20, 1310-1314.
Reis, S. C. M., Lachter, E. R., Nascimento, R. S. V., Rodrigues Jr., J. A., Reid, M. G., 2005. Transesterification of brazilian vegetable oils with methanol over ion-exchange resins. Journal of the American Oil Chemists'' Society, 82, 661-665.
Rodrigues, R. C., Volpato, G., Wada, K., Ayub, M. A. Z., 2008. Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols. Journal of the American Oil Chemists’ Society, 85, 925-930.
Schwab, A.W.; Dykstra, G.J.; Selke, E.; Sorenson, S.C.; Pryde, E. H., 1988. Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists’ Society, 1988, 65, 1781-1786.
Seddon, K. R., Stark, A., Torres, M. J., 2000. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem., 72, 2275-2287.
Sharma, Y.C., Singh, B., Upadhyay, S.N., 2008. Advancements in development and characterization of biodiesel: a review. Fuel, 87, 2355-2373.
Shumaker, J. L., Crofcheck, C., Tackett, S. A., Santillan-Jimenez, E., Crocker, M., 2007. Biodiesel production from soybean oil using calcined Li–Al layered double hydroxide catalysts. Catalysis Letters, 115, 56-61.
Singh, A. K., Fernando, S. D., Hernandez, R., 2007. Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy & Fuel, 21, 1161-1164.
Srivastava, A., Prasad, R., 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111-133.
Stavarache, C., Vinatoru, M., Nishimura, R., Maeda, Y., 2005. Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrasonics Sonochemistry, 12, 367-372.
Sunith, S., Kanjilal, S., Reddy, P. S., Prasad, R. B. N., 2007. Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnology Letters, 29, 881-885.
Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., Tominaga, Y., 2000. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. JAOCS, 77, 355-360.
Wu, Q., Chen, H., Han, M., Wang, D., Wang, J., 2007. Transesterification of cottonseed oil catalyzed by br?幯sted acidic ionic liquids. Industrial & Engineering Chemistry Research, 46, 7955-7960.
Xie, W., Peng, H., Chen, L., 2006. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General, 300, 67-74.
Yuan, X., Liu, J., Zeng, G., Shi, J., Tong, J., Huang, G., 2007. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy, 33, 1678-1684.
Zhang, Y., Dube, M. A., McLean, D. D., Kates, M., 2003. Biodiesel production from waste cooking oil: 1. process design and technological assessment. Bioresource Technology, 89, 1-16.
Zhao, D., Wu, M., Kou, Y., Min, E., 2002. Ionic liquids: applications in catalysis. Catalysis Today, 74, 157-189.
Zheng, Y., Quan, J., Ning, X., Zhu, L. M., Jiang, B., He, Z. Y., 2009. Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. World Journal of Microbiology and Biotechnology, 25, 41-46.
王啟川、王運銘、朱博祥、曲新生、李君禮、林公元、胡耀祖、翁素真、陳志臣、陳金德、曹芳海、楊秉純、萬其超、葉勝年、葉惠青、楊鏡堂、劉志放、蔡信行(2007),能源科技研究發展白皮書。
台灣中油股份有限公司(2007),車用柴油規範。
吳奇璋,能源報導 2008年4月,5~7頁。
李唐,能源報導 2008年4月,8~10頁。
黃宗煌,能源報導 2007年1月,8~10頁。
盧文章、林昀輝、李宏台,能源報導 2007年1月,11~13頁。
謝惠子,能源報導 2007年10月,20~22頁。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top