跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高子晉
研究生(外文):KAO, TZU-CHIN
論文名稱:高螺旋角銑刀於CFRP在不同輔助銑削環境切削性能之研究
論文名稱(外文):Study on Cutting Performance for CFRP Composite by Using a High-Helix End Mill under Different Assisted Milling Environments
指導教授:林盛勇
指導教授(外文):LIN, SHEN-YUNG
口試委員:劉德騏王世明鄭碁弘
口試委員(外文):LIU, DE-SHINWANG, SHIH-MINGCHENG, CHI-HUNG
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:108
中文關鍵詞:碳纖維複合材超音波輔助冷風輔助高螺旋角銑刀加工缺陷
外文關鍵詞:CFRPBiaxial ultrasonically assistedChilled air assistedHigh helix angle cutting-toolMachining failure mechanisms
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
碳纖維複合材具有強度大,硬度高、非均質性、異向性及導熱性差等特點。此複合材的難切削性及其層與層介面間較低的結合強度,切削加工時在切削負載的作用下容易產生各種加工缺陷,且加上纖維的不同舖設疊方式等因素,皆會使得切削過程變得十分複雜。
本文選用兩種刀具幾何及四種纖維鋪層角度於無輔助環境下進行碳纖維複合材銑削實驗,監測不同刀具螺旋角與纖維鋪層角度的切削性能及表面品質之變化,以利於螺旋角及鋪層角度之挑選,供給後續冷風、雙軸向超音波及此二者混合等輔助之銑削實驗,從結果驗證輔助效果之優劣,期找出較好的加工品質。結果顯示,相較於低螺旋角在切削時易容易因切削振動而產生分層、微裂紋、撕裂、纖維拔出等缺陷。而高螺旋角能有效的改善加工缺陷、降低刀具磨耗及擁有良好的表面粗糙度,但其帶來的高軸向力易於高進給與高切深的情況產生起毛缺陷。纖維鋪層角度θ 是影響碳纖維複合材單向層合板加工性能的重要因素,結果發現θ =90゜加工時因只有垂直於纖維鋪層方向的剪切分力,並沒有額外的拉伸分力,因此可得到優於其餘三種纖維鋪層角度(0゜、45゜、135゜)的切削性能。冷風輔助混合雙軸向超音波輔助銑削系統結合了兩種輔助的優勢來進行加工,在表面粗糙度及刀具磨耗的表現上皆優於無輔助或各單項輔助系統,明顯地改善加工品質。最後發現在三種輔助情況下使用高轉速、小徑向切深及低進給率時可獲得較好的加工品質。

Carbon fiber reinforced polymer (CFRP) are characterized by high strength, high hardness, anisotropy and poor thermal conductivity. This composite material belongs to difficult-to-machine material due to its properties of poor machinability and low interlayer bonding strength. The various defects are easily generated under the action of the cutting load during the cutting processes. Also, the different fiber orientations of the fibers lay-up will let the cutting process become extremely complicated.

Firstly, in this study two types of cutting-tool helix angle and four kinds of fiber orientation angle are used in the milling experiment of the CFRP without assistance. The variations of cutting performance and machined surface quality with different tool helix and the orientation angles were monitored in the experiment. These appropriate angles just mentioned above are thus chosen for subsequent milling experiments with chilled-air, biaxial-ultrasonic and the hybrid assistances, respectively. Finally, the merits among each assisted system from the experimental results are evaluated trying to obtain the better machining qualities.The results indicated that failure mechanisms such as delamination, micro-crack, spalling, and fiber pull-out are easily constituted in the experiments with low helix angle cutting-tool due to cutting vibration during the machining process as compared with high helix angle. The high helix angle can effectively improve machining failure mechanisms and tool wear, and have a good surface roughness consequently. However, fuzzing is easily deduced with high feed rate and radial cutting depth in high helix angle situation due to the action of larger axial force component. The fiber orientation angles θ is an important factor affecting the cutting performance of the unidirectional carbon fiber reinforced polymer. It is found that only the shear force component existing when θ = 90゜, which is perpendicular to the fiber orientations, and there is no additional tensile force component induced within the fibers during the cutting processes. Therefore, the cutting performance of this orientation is prevail over the other three fiber orientation angles (0∘, 45∘, 135∘). The combination of chilled-air assisted and biaxial-ultrasonic assisted is conducted for hybrid assisted milling system which integrates these two assisted advantages for machining. Hence, the experimental results in terms of surface roughness and tool wear performances obtained prevails over the other assisted systems and the case of without assistance, and the machining quality may significantly be improved. Finally, it was found that good machining quality can be obtained when using the cutting conditions of high spindle speed, small radial cutting depth and low feed rate in each assisted system.

摘要......i
Abstract......ii
誌謝......iv
目錄......v
表目錄......vi
圖目錄......vii
第一章 前言......1
1.1 研究背景......1
1.2 研究動機與目的......2
1.3 文獻回顧......3
1.4 論文架構......8
第二章 理論基礎......9
2.1 碳纖維複合材的結構與特性......9
2.2 切削輔助技術......9
2.3 刀具螺旋角之效應......11
第三章 實驗方法與規劃......13
3.1 工件材料與刀具特性......14
3.2 實驗儀器設備與規格......16
3.3 實驗方法與執行步驟......23
第四章 結果與討論......25
4.1無輔助銑削......25
4.2冷風系統輔助銑削......45
4.3雙軸向超音波輔助銑削......50
4.4冷風輔助混合雙軸向超音波輔助銑削......55
第五章 結論......62
參考文獻......63
附錄A-1......66
附錄B-1......79
附錄C-1......92
Extended Abstract......105

[1]Akira Hosokawa, Naoya Hirose, Takashi Ueda, Tatsuaki Furumoto, 2014, High-quality machining of CFRP with high helix end mill, CIRP Annals-Manufacturing Technology, Vol.63, pp.89-92.
[2]M.K. Nor Khairusshima, A.K. Nurul Aqella, I.S.S. Sharifah, 2017, Optimization of milling carbon fibre reinforced plastic using RSM, Procedia Engineering, Vol.184, pp.518-528.
[3]Konstantin Szallies, Nico Siebert, Jean Pierre Bergmann, 2017, Low frequency oscillated milling of carbon fiber-reinforced plastics, Procedia CIRP, Vol.66, pp.153-158.
[4]Eckart Uhlmann , Sebastian Richarz, Fiona Sammler, Ralph Hufschmied, 2016, High speed cutting of carbon fibre reinforced plastics, Procedia Manufacturing, Vol.6, pp.113-123.
[5]Nor Farah Huda Abd Halim, Helen Ascroft, Stuart Barnes, 2017, Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP), Procedia Engineering, Vol.184, pp.185-191.
[6]Tarek Elgnemi, Keivan Ahmadi, Victor Songmene, Jungsoo Nam, Martin B.G. Jun, 2017, Effects of atomization-based cutting fluid sprays in milling of carbon fiber reinforced polymer composite, Journal of Manufacturing Processes, vol.30, pp.133-140.
[7]A.H Nor Farah Huda, Helen Ascroft, Stuart Barnes, 2016, Machinability study of ultrasonic assisted machining (UAM) of carbon fibre reinforced plastic (CFRP) with multifaceted tool, Procedia CIRP, Vol.46, pp.488-491.
[8]Jinyang Xu and Mohamed El Mansori, 2017, Wear characteristics of polycrystalline diamond tools in orthogonal cutting of CFRP/Ti stacks, Wear, Vol.376-377, pp.91-106.
[9]Oğuz Çolak, Talha Sunar, 2016, Cutting forces and 3D surface analysis of CFRP milling with PCD cutting tool, Procedia CIRP, Vol.45, pp.75-78.
[10]M.K. Nor Khairusshima, C.H. Che Hassan, A.G. Jaharah, A.K.M. Amin, A.N. Md Idriss, 2013, Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic, Wear,Vol.302, pp.1113-1123.
[11]M.K. Nor Khairusshima and I.S.S. Sharifah, 2017, Study on tool wear during milling CFRP under dry and chilled air machining, Procedia Engineering, Vol.184, pp.78-89.
[12]張毅,超聲振動銑削碳纖維複合材料刀具磨損研究,2010,精密製造與自動化,第2期,pp.13-15。
[13]高國富、馬星輝、董小磊,2009,超聲振動銑削碳纖維複合材料表面特徵研究,現代製造工程,第9期,pp.86-89。
[14]張加波、石文天、劉漢良、寧志鵬,2014,碳纖維複合材料超聲振動加工,宇航材料工藝,第1期,pp.122-126。
[15]劉浩文、程寓、蘇飛,2014碳纖維增強複合材料成型槽銑削的試驗研究,機床與液壓,第42卷,第19期,pp.38-41。
[16]周井文、陳燕、傅玉燦、徐九華、胡安東、劉思齊,2015,纖維切削角對CFRP 加工缺陷的影響規律,哈爾濱工業大學學報,第47卷,第7期,pp.110-116。
[17]周井文、陳燕、傅玉燦、徐九華、胡安東、劉思齊,2015,進給速度對不同纖維方向CFRP銑削表面形貌的影響,複合材料學報,第32卷,第2期,pp.370-377。
[18]Norbert Geier and Tibor Szalay, 2017, Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP), Measurement, Vol.110, pp.319-334.
[19]Daxi Geng, Zhenghui Lu, Guang Yao, Jiajia Liu, Zhe Li, Deyuan Zhang, 2017, Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP, International Journal of Machine Tools and Manufacture, Vol.123, pp.160-170.
[20]F.D. Ning, W.L. Cong, Z.J. Pei, C. Treadwell, 2016, Rotary ultrasonic machining of CFRP: A comparison with grinding, Ultrasonics, Vol.66, pp.125-132.
[21]T. Ishidaa, K. Noma, Y. Kakinuma, T. Aoyama, S. Hamada, H. Ogawa, T. Higaino, 2014, Helical milling of carbon fiber reinforced plastics using ultrasonic vibration and liquid nitrogen, Procedia CIRP, Vol.24, PP.13-18.
[22]Md. Mofizul Islam, Chang Ping Li, Sung Jae Won, Tae Jo Ko, 2017, A deburring strategy in drilled hole of CFRP composites using EDM process, Journal of Alloys and Compounds, Vol.703, pp.477-485.
[23]Jing Liu, Deyuan Zhang, Longgang Qin, Linsong Yan, 2012, Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP), International Journal of Machine Tools and Manufacture, Vol.53, pp.141-150.
[24]Daxi Geng, Deyuan Zhang, Zhe Li, Dapeng Liu, 2017, Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks, Ultrasonics, Vol.75, pp.80–90.
[25]U. Teicher, S. Müller, J. Münzner, A. Nestler, 2013, Micro-EDM of carbon fibre-reinforced plastics, Procedia CIRP, Vol.6, pp.320-325.
[26]Daxi Geng, Deyuan Zhang, Yonggang Xu, Fengtao He, Dapeng Liu, Zuoheng Duan, 2015, Rotary ultrasonic elliptical machining for side milling of CFRP: Tool performance and surface integrity, Ultrasonics, Vol.59, pp.128-137.
[27]Fuda Ning, Hui Wang, Yingbin Hu, Weilong Cong, Meng Zhang, Yuzhou Li, 2017, Rotary ultrasonic surface machining of CFRP composites: A comparison with conventional surface grinding, Procedia Manufacturing, Vol.10, pp.557-567.
[28]陳明、邱坤賢、秦聲、王呈棟、蔡曉江,2014,高強度碳纖維增強複合材料層合板的鑽削制孔過程及其缺陷形成分析,南京航空航天大學學報,第46卷,第5期,pp.667-674。
[29]胡安東、陳燕、傅玉燦、徐九華、劉思齊,2016,超聲振動輔助銑磨加工對CFRP切削力和表面質量的影響,複合材料學報,第33卷,第4期。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top