跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳至豪
研究生(外文):Chih-Hao Chen
論文名稱:摩擦攪拌Mg-Li-Al-Zn合金之改質組織特性及拉伸機械性質應變速率效應探討
論文名稱(外文):Microstructural Feature and the Effect of Strain Rate on Tensile Mechanical Properties of Friction Stir Processed Mg-Li-Al-Zn Alloy
指導教授:楊崇煒
指導教授(外文):Chung-Wei Yang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:88
中文關鍵詞:鎂鋰合金摩擦攪拌製程拉伸機械性質應變速率
外文關鍵詞:magnesium-lithium alloysfriction stir process (FSP)tensile mechanical propertiesstrain rate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金具有低密度、高比強度、散熱性佳、制震性佳及電磁波遮蔽效應等優點,廣泛應於電子、交通等多種產業的應用。鎂合金添加鋰元素可形成HCP結構的富鎂α相及BCC結構的富鋰β相,鎂鋰合金的密度約1.35~1.65g/cm3,密度較一般的鎂合金更低,更可達到輕量化的目的。此外,添加鋰元素可使合金系統的延性增加,並提升合金的低溫塑性;添加鋁元素有助於提升合金最大抗拉強度;添加鋅元素能去雜質的功能,且增加抗蝕性。本實驗採用Mg-9Li-3Al-1Zn(LAZ931)合金擠型材,並利用摩擦攪拌製程(Friction Stir Process,FSP)來進行改質。經摩擦攪拌製程後,由XRD的結果顯示,FSP材織構較微弱而不明顯,其硬度略微上升,而抗拉強度及降伏強度都有下降之趨勢,但延伸率卻明顯提高,這亦表示經摩擦攪拌後的試片具有較好的加工性;此外,本研究也對不同應變速率及拉伸方向做實驗,從實驗結果可發現,在低的應力應變速率和沿ED/PD方向拉伸,也能得到較好的加工性。

Magnesium (Mg) and its alloys have several advantages such as low density, high specific strength, excellent heat and vibration resistances, and radiation absorption of electromagnetic waves. They are now widely used in consumer electronic industries, automobiles and aerospace of nowadays for the purpose of reducing vehicle weight. Mg-Li alloys show lower density (1.35-1.65 g/cm3) than commonly used Mg alloys. Adding Li to Mg alloys can transform the hcp structure to a body-centered cubic (bcc) structure, substantially increasing the ductility of the Mg-Li alloys and further reducing its density. The addition of Al provides solid solution strengthening. When Zn is added to the Al-containing Mg alloys, it can help to reduce the impurity content and improve the corrosion resistance. In the present study, the extruded Mg-9Li-3Al-1Zn (LAZ931) alloy was selected as the raw material. The modification effects of friction stir process (FSP) on the microstructural features and tensile mechanical properties of LAZ931 are investigated in this study. The XRD results show that the peaks intensity of the hcp α-phase is significantly reduced and the texture of extruded LAZ931 alloy is changed after the FSP. The microhardness within SZ is increased and higher than the the base metal region. The yield strength and ultimate tensile strength are decreased, however, the elongation of LAZ931 is significantly increased after the FSP. It indicates that the formability of LAZ931 is improved after the FSP process. In addition, the effect of strain rate on the tensile mechanical properties of LAZ931 is examined in this study. The elongation of friction stirred LAZ931 is increased while applying a tensile direction parallel to the extursion and stir processing direction at lower strain rate.

目錄
中文摘要.................................................i
英文摘要................................................ii
目錄...................................................iv
表目錄.................................................vi
圖目錄................................................vii
第一章 前言............................................1
第二章 文獻回顧.........................................2
2-1 鎂合金..........................................2
2-1-1 鎂合金的的結構及性質..............................2
2-1-2 鎂合金記號表示及元素添加...........................3
2-1-3 常見之鎂合金分類及特性............................5
2-2 鎂鋰合金之研究和發展現況...........................6
2-3 鎂合金變形機制...................................7
2-4 摩擦攪拌銲接/製程(Friction Stir Welding/Process, FSW/FSP)................................................7
2-4-1 摩擦攪拌銲接原理及機構............................7
2-4-2 摩擦攪拌製程後之組織特性...........................8
2-4-3 摩擦攪拌製程機構..................................9
2-4-4 用摩擦攪拌製程以製造微細晶粒.......................9
2-5 鎂合金之織構....................................10
2-5-1 織構之效應......................................10
2-5-2 織構分析........................................10
2-6 材料受到外力時之應力應變..........................10
第三章 實驗內容與方法..................................24
3-1 實驗材料........................................24
3-2 摩擦攪拌製程改質(FSP)............................24
3-3 微觀組織解析....................................24
3-4 X-Ray繞射相組成與織構分析........................24
3-5 機械性質測試....................................25
3-5-1 硬度量測........................................25
3-5-2 拉伸實驗........................................25
3-6 拉伸破斷面觀察..................................25
3-7 掃描式電子顯微鏡(SEM)............................26
第四章 實驗結果與討論..................................32
4-1 微觀組織分析....................................32
4-2 X-Ray繞射相組成分析.............................33
4-3 機械性質實驗....................................33
4-3-1 硬度量測........................................33
4-3-2 拉伸測試........................................34
4-3-3 拉伸破斷面觀察..................................34
4-4 拉伸性質與應變速.................................35
4-4-1 應變硬化指數n值分析..............................35
4-4-2 應變速率敏感值m值分析............................36
4-5 極圖和EBSD分析..................................37
第五章 結論...........................................76
參考文獻................................................77
擴展摘要................................................82
簡歷...................................................88





[1]H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jashik, V. Kaese, "Development, Processing and Applications Range of Magnesium Lithium Alloys", Materials Science Forum, 350-351,2000,pp.31-42.
[2]J.Y. Wang, W.P. Hong, P.C. Hsu, C.C Hsu, and S. Lee, "Microstructures and Mechanical Behavior of Processed Mg-Li-Zn Alloy", Material Science Forum,419-422, 2003,pp.165-170.
[3]Y.Kojima and S. Kamado, "Fundamental Magnesium Researches in Japan", Material Science Forum,488-189, 2005,pp.9-16.
[4]A. Alamo, and D. Banchik, "Precipitation Phenomena in the Mg-31at%Li-1at%Al alloy", Journal MaterScience, Vol.15,1980,pp.222-229.
[5]J. Clark, and L Sturkey, "The Age-Hardening Mechanism in Mg-Li-Zn Alloys",J Institute Materals, Vol.56, 1957,pp.272-276.
[6]W.M Thomas, et al, TWI, International Patent Application No.PCT/GB92/02203,1991.
[7]C.J. Dawes and W.M. Thomas, "Friction Stir Process Welds Aluminum Alloys",Welding Jonit, vol.75,p941-945, 1996.
[8]吳建翰,2010,”摩擦攪拌AZ91鎂合金γ-Mg 17-Al 12及織構對拉伸性質影響之研究”,國立成功大學材料科學與工程學系碩士論文。
[9]M.M. Avedesian and H. Baker(Eds), ASM Specialty Handbook-Magnesium and Magnesium Alloys, ASM International, 1999, pp. 3-51.
[10]昌山正孝、賴秋陽,1993,”非鐵金屬材料”,復漢出版社,頁174。
[11]葉哲政,2003,”鎂合金在車輛產業之應用專題研究”,金屬中心,頁14。
[12]H.E, Frederich, Barry L.Mordlike, "Magnesium Technology", Springer, (2006).
[13]N.H. Databank, Norsk Hydro Research Center Porsgrunn, 1996.
[14]Cahn R.W, Haasen P, Kramer E.J(ed)‚ “Structure and Properties of Nonferrous Alloys”‚ Material Science and Technology A Comprehensive TREATMENT in Matucha KH(ed) ‚(Voll 18), Weinheim,VCH,1996.
[15]Jona F, Marcus P M. Magnesium under Pressure, “Structure and Phase Transition”‚ J Phys Condens Matter, 2003,15,7727.
[16]邱垂泓、楊智超,”鎂合金成型技術之發展趨勢”,工業材料雜誌,第174期,84-88頁,民國90年6月。
[17]蔡幸甫,”輕金屬產業發展現況及趨勢”,工業材料雜誌,第198期,72-80頁,民國92年6月。
[18]林英男,”鎂合金固相回收及熱機處理研究”,國立中央大學,博士論文,民國98年。
[19]J.M. Song, T.X. Wen, J.Y. Wang, "Vibration Fracture Properties of a Lightweight Mg-Li-Zn Alloy", Scripta Materialia, Vol. 56(6), Mar.2007, pp. 529-532.
[20]黃繼遠、莫文偉、鄭銘章,”隱形殺手電磁波 vs. 殺手剋星電磁波遮蔽材”, 科學發展,第362期,18-21頁,2003年2月。
[21]F.A. Lowenheim, "Modern Electroplating", Electrochemical Society, 1974.
[22]S.F. Sibley, W.C. Butterman and Staff, "Matals Recycling in the United States", Resources, Conservation and Recycling, Vol. 15(3-4), pp. 259-267.
[23]A. Ditze and K. Kongolo, "Recovery of Scandium from Magnesium, Aluminium and Iron Scrap", Hydrometallurgy, Vol. 44(1-2) , 1997,pp. 179-184.
[24]B.L. Mordlike and K.U. Kainer(Eds), “Magnesium Alloys and their Applications”, Werkstoff-Infromationsgesellschaft mbH, Hamburger, 1998.
[25]E. Aghion, D. Eliezer, "Magnesium Alloys Science Technology and Applications", Israeli Consortium for the Development of Magnesium Technologies, Israel, 2004, pp.17.
[26]劉楚明、朱秀榮、周海濤,(2006),”鎂合金相圖集”,(劉楚明、朱秀榮、周海濤,編者) 中南大學出版社。
[27]R.W. Cahn, P. Haasen, E.J. Kramer and K.H. Matucha(Eds), Materials Science and Technology A Comprehensive Treatment "Structure and Properties of Nonferrous Alloys", VCH Verlagsgesellschaft mbH, Weinheim, Vol. 8, 1996, pp. 117-212.
[28]Y. Song, D. Shan, R. Chen, E.H. Han, "Corrosion Characterization of Mg–8Li Alloy in NaCl Solution", Corrosion Science, Vol. 51(5), May 2009, pp. 1087-1094.
[29]Z. Drozed, and Z. Trojanova, "Deformation Behavior of Mg-Li-Al Alloys", Journal of Alloys and Compounds, Vol.378, 2004, pp.192-195.
[30]C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, "Effects of Solidification Rate and Ageing on the Microstructure and Mechanical Properties of AZ91 Alloy", Materials Science and Engineering A325(2002), pp.344~355.
[31]C. Shaw and H. Jones, "The Contributions of Different Alloying Additions to Hardening in Rapidly Solidified Magnesium Alloys", Materials Science and Engineering A226-228(1997), pp.856~860.
[32]E. Ovrelid, P. Bakke, T.A. Engh, Light Meatals, pp.141-154, 1997.
[33]J.B. Clark, L. Zabdyr, Z. Moser, Hugh Baker(Eds.). Vol.3. "Alloy Phase Diagrams", Vol.2, pp.285. ASM International.
[34]J.D. Robson, D.T. Henry, B. Davis, "Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle Pinning", Materials science and engineering, A 528‚ (2011), pp.4239-4247.
[35]Peng Cao, Ma Qian, David H. StJohn, "Effect of Manganese on Grain Refinement of Mg–Al Based Alloys", Scripta materialia(54)‚ (2006), pp.1853-1858.
[36]B. Smola, I. Stulikova, V. Ocenasek, J. Pelcova and V. Neubert, "Annealing Effects in Al–Sc Alloys", Materials Science and Engineering: A, Vol. 462, 2007, pp. 370-374.
[37]C.T Chiang, S. Lee and C.L Chu, "Rolling Route for Refining Grains of Super Light Mg-Li Alloys Containing Sc and Be", Transactions of Nonferrous Metals Society of China, Vol. 20(8), Aug.2010, pp. 1374-1379.
[38]J.S. Leu, C.T Chiang, S. Lee, Y.H. Chen and C.L. Chu, "Strengthening and Room Temperature Age-Softening of Super-Light Mg-Li Alloys", Journal of Materials Engineering and Performance, Vol. 19(9), Feb.2010, pp. 1235-1239.
[39]H.Y. Wu, Z.W. Gao, J.Y. Lin and C.H. Chiu, "Effects of Minor Scandium Addition on the Properties of Mg–Li–Al–Zn Alloy", Journal of Alloys and Compounds, Vol. 474(1-2), Apr.2009, pp. 158-163.
[40]T. Al-Samman, G. Gottstein, (2008), "Room Temperature Formability of a Magnesium AZ31 Alloy: Examining the Role of Texture on the Deformation Mechanisms", Material science and engineering A, 488, pp.406-414.
[41]莊家豪,2005,”摩擦旋轉攪拌對鎂基多元合金之混成與奈米細晶化研究”,國立中山大學材料科學研究所碩士論文。
[42]曾寶貞,工業材料156期(1999),153-159頁。
[43]成嘉偉,2011,”鋁與鈧元素添加對於鎂鋰合金機械性質與微結構之影響”,國立中央大學機械工程學系碩士論文。
[44]R. Ninoiya, and K. Miyake, "A Study of Superlight and Superplastic Mg-Li Based Alloy", Journal of Japan Institute of Light Metals, Vol.51, 2001, pp.509-513.
[45]A. Alamo and A. D. Banchik, “Precipitation Phenomena in the Mg-31 at% Li-1 at% Al Alloy”, Journal of Material Science, Vol. 15, 1980, pp. 222-229.
[46]ASM, "Magnesium Alloys", Metals Handbook 9th Edition, Vol. 6, 1985, pp.425-434.
[47]Y.W. Kim, D.H. Kim, H.I. Lee, C.P. Hong. (1998). "Widmanstatten Type Solidification In Squeeze Casting Of Mg-Li-Al Alloys", Scripta Materialia, 38(6), pp.923-929.
[48]陳裕文,2013,”α/β雙相鎂鋰合金織構及摩擦攪拌改質效應對拉伸機械性質影響之研究"國立虎尾科技大學材料科學與工程學系碩士論文。
[49]Y.W. Kim, D.H. Kim, H.I. Lee and C.P. Hong, “Widmanstatten Type Solidification in Squeeze Casting of Mg-Li-Al Alloys”, Scripta Materialia, Vol. 38(6), Feb.1998, pp. 923-929.
[50]G.S. Song, M. Staiger and M. Kral, “Some New Characteristics of the Strengthening Phase in β-Phase Magnesium–Lithium Alloys Containing Aluminum and Beryllium”, Materials Science and Engineering , Vol. 371 (1-2), Apr.2004, pp. 371-376.
[51]C.C. Hsu, J. Y. Wang and S. Lee, “Room Temperature Aging Characteristic of MgLiAlZn Alloy”, Material Transactions, Vol. 49(11), 2008, pp. 2728-2731.
[52]J.Y. Wang, “Mechanical Properties of Room Temperature Rolled MgLiAlZn Alloy”, Journal of Alloys and Compounds, Vol. 485(1-2), Oct.2009, pp. 241-244.
[53]J.S. Leu, C.T Chiang, S. Lee, Y.H. Chen and C.L. Chu, “Strengthening and Room Temperature Age-Softening of Super-Light Mg-Li Alloys”, Journal of Materials Engineering and Performance, Vol. 19(9), Feb.2010, pp. 1235-1239.
[54]S. Graff, "Micromechanical Modeling of the Deformation of HCP Metals". GKSS-Forschungszentrum Geesthacht GmbH, (2008).
[55]R. Quimby, J. Mote, J. Dorn, "Yield Point Phenomena in Magnesium-Lithium Single Crystal", Transactions of Americam Society for Metals, vol.55, 1962, pp.149-157.
[56]M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr and A.C. Nunes, "Flow Patterns During Friction Stir Welding", Materials Characterization, 49, 2003, pp.95-101.
[57]A.P. Reynold, W.D. Lockwood, and T.U. Seidel, "Processing-Property Correlation in Friction Stir Welds", Material Science Forum, 331-337, 2000, pp.179.
[58]范寶龍,2007,”異種金屬之摩擦攪拌銲接之實驗”,國立中山大學機械與機電工程研究所碩士論文。
[59]K.N. Krishnam, "On the Formation of Onion Rings in Friction Stir Welds", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 327, 2002, pp.246-251.
[60]Rajiv S. Mishra, Murray W. Mahoney(Eds)‚ "Friction Stir Welding and Processing", ASM International‚ (2007).
[61]陳群明,2014,”摩擦攪拌銲接鎂基/鋁基異質合金之銲道微觀組織及拉伸機械性質研究”,國立虎尾科技大學材料科學與工程學系碩士論文。
[62]Zhen-Bo He, Yong-Yi Peng, Zhi-Min Yin, Xue-Feng Lei, “Comparison of FSW and TIG Welded Joints in Al-Mg-Mn-Sc-Zr Alloy Plate”. Transactions of nonferrous metals society of China, 21, 2011, pp.1685-1691.
[63]R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara and A.K. Mukherjee, Scripta Materialia, 42‚2000, pp. 163.
[64]Z.Y. Ma, R.S. Mishra and M.W. Mahoney, Acta Materialia, 50‚ 2002‚ pp. 4419.
[65]張志溢,2004,”擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究”,國立中山大學材料科學研究所碩士論文。
[66]J.A. Esparza, W.C. Davis, E.A. Trillo and L.E. Murr, Journalof Materials Science Letter‚ 21‚ 2002‚pp. 917.
[67]S. Juttner, WeldMetal‚ 66‚ 1998‚pp. 11.
[68]D.K. Xu, "The Relationship BetweenMacro-Fracture Modes and Roles of Different Deformation Mechanisms for TheAs-Extruded Mg-Zn-Zr Alloy", Scripta Materialia, Vol. 58, No. 12, 2008, pp. 1098-1101.
[69]Shinji Ando, and Hideki Tonda, "Non-Basal Slip in Magnesium-Lithium Alloy Single Crystals", Japan Institute of Metals, Vol. 41, 2000, pp. 1181-1191.
[70]H. Takuda, and H. Matsusaka, "Tensile Properties of AFew Mg-Li-Zn Alloy Thin Sheets", Journalof Materials Science, Vol. 37, 2002, pp. 51-57.
[71]Park SHC, Sato YS, Kokawa H. "Basal Plane Texture and Flow Pattern in Friction Stir Weld of a Magnesium Alloy", Metallurgical and Materials Transactions A‚ 3A‚ 2003‚ pp. 987-994.
[72]D.B. Williams and C.B. Carter, “Transmission Electron Microscopy”, Plenum Press, New York‚ 1996, pp. 291-295.
[73]J.H. Hollomon, “Tensile Deformation”, Trans. AIME, 162‚ 1945, pp.268-290.
[74]P. Ludwik, "Elemente der Technologischen Mechanik", Springer Verlag, Germany, 1909.
[75]H.W. Swift, "Plastic Instability UnderPlane Stress", Journalof the Mechanics Physics of Solids, 1‚ 1952, pp.1-18.
[76]E. Voce, "The Relationship BetweenStress and Strain for HomogeneousDeformation", Journal of the Institute of Metals. 74‚ 1948, pp. 537-562.
[77]D. B. Williams and C. B. Carter, ”Transmission Electron Microscopy” Plenum Press, New York, 1996. pp. 291-295.
[78]林尚秋,2008,”退火溫度對Mg-9wt.%Li-3wt.%Al-1wt.%Zn合金軋延板材微觀組織與機械性質影響之研究”,國立中興大學材料科學與工程學研究所碩士論文。
[79]S.H.C Park, Y.S. Sato and H. Kokawa, “Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys”‚Matallurgicaland Materials Transactions 32A‚ 2001‚ pp. 3033.
[80]S.H.C Park, Y.S. Sato and H. Kokawa, ” Effect of Micro-Texture on Fracture Location in Friction Stir Weld of Mg Alloy AZ61 During Tensile Test”‚ Scripta Materialla‚ 49‚ 2003‚ pp. 161.
[81]C. R. Brooks, "Heat Treatment, Structure and Properties of Nonferrous Alloys", ASM, 1982. pp. 59-69.
[82]R. Reed-Hill and R. Abbaschian, "Physical Metallurgy Principles", 3rd Edition, PWS Publishing Company, pp.294-298.
[83]李信委,2011,”摩擦攪拌製程對AZ31鎂合金擠型材微觀組織及拉伸性質之影響”國立成功大學材料科學及工程學系博士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top