跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉明曜
研究生(外文):Liu, Ming-Yao
論文名稱:爐石基無機聚合物修補材料之黏結行為
論文名稱(外文):Bonding Behavior of Repair Material using Ground Granulated Blast Furnace Slag Based Geopolymer
指導教授:郭文田郭文田引用關係
指導教授(外文):Kuo, Wen-Ten
口試委員:潘煌鍟侯琮欽
口試委員(外文):Pan, Huang-XingHou, Tsung-Ching
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:無機聚合物修補材料黏結強度修補機制水淬爐石粉飛灰微觀結構
外文關鍵詞:GeopolymerRepair materialBond strengthRepair mechanismFurnace slagFly ashMicrostructural characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
爐石飛灰無機聚合物含較高含量的鈣反應產物,大量的水化矽酸鈣和水化鋁矽酸鈣,這些產物及無機聚合物膠體填充了大量孔隙,使結構更為緻密,因其高強度、高緻密等特性,所以爐石基無機聚合物既可作為黏結劑,亦可作為密封隔絕層,用於修補材料穩定結構更為有效。本研究設計爐石基無機聚合物作為混凝土修補材料,膠結材以水淬爐石粉為主,用飛灰取代0%、10%、20%、30%,液固比為0.4、0.5,分別以斜剪強度、劈裂強度、及抗彎強度三種力學性質來探討試體修補後之黏結強度成效,並導入音射法及SEM佐證其破壞模式及微觀結構。結果發現,修補強度會隨液固比上升而下降。研究結果顯示出飛灰取代量10%得到較好修補成效,透過AE監測劈裂試驗發現經爐石基無機聚合物修補材料修補後之破壞行為相似於卜特蘭混凝土,在微觀試驗結果發現混凝土與爐石基無機聚合物修補材料間的界面過渡區多為水化產物,在緻密界面處會提升黏結強度。本研究所探討之爐石基無機聚合物較工程界常用之無收縮水泥砂漿修補材料更具有修補之成效。
Ground Granulated Blast Furnace Slag(GGBFS) and fly ash geopolymer containing high content of calcium reaction products, a large number of hydrated calcium silicate and calcium hydrosilicate calcium silicate, these products and geopolymer colloid filled with a large number of pores, the structure is more compact, because of its High strength, high density and other characteristics, so the GGBFS-based geopolymer can be used as a binder, but also as a sealing layer, used to repair the material stable structure is more effective. In this study, the GGBFS-based geopolymer was designed as the concrete repair material. The cemented material was mainly composed of 0%, 10%, 20%, 30%, and the liquid-solid ratio was 0.4 and 0.5, Shear strength, splitting strength and flexural strength of the specimen. The damage mode and microstructure of the specimen were investigated by the method of injection and scanning. It was found that the repair strength decreased with the increase of liquid-solid ratio. The results show that the fly ash substitution is better than 10%, and the damage behavior of the GGBFS-based geopolymer repair material is similar to that of the Portland concrete by the AE monitoring splitting test. The results show that the concrete And the GGBFS-based geopolymer repair material between the interface transition zone for the hydration products, in the dense interface will enhance the bond strength. The non-shrinkage cement mortar repair materials commonly used in the GGBFS-based geopolymer discussed by this study are more effective.
目錄
摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 緒論 1
第二章 文獻回顧 5
2.1 無機聚合物之發展 5
2.2 無機聚合物之形成 5
2.3 無機聚合物之反應機制 6
2.3.1 無機聚合物鹼活化之模式 8
2.3.2 無機聚合物之反應產物 9
2.4 爐石基無機聚合物與水泥之產物比較 9
2.5 無機聚合物之影響因素 10
2.5.1 基底材料 11
2.5.2 鹼活化劑種類 11
2.5.3 鹼活化劑濃度 12
2.5.4 液固比 12
2.6無機聚合物之特性 13
2.7修補材料 13
2.7.1修補材料特性 13
2.7.2無機聚合物修補材料種類 14
2.7.3修補材料之比較 15
2.8 音射法 16
第三章 實驗計畫 18
3.1 試驗內容及流程 18
3.2 試驗材料 20
3.3 試驗儀器 27
3.4 試驗變數及配比 32
3.5 拌合流程 36
3.6 試驗項目 37
第四章 結果與討論 43
4.1 爐石基無機聚合物修補材料之新拌性質 43
4.1.1 爐石基無機聚合物修補材料之凝結時間 43
4.2.2 爐石基無機聚合物修補材料之坍流度 44
4.2.3 爐石基無機聚合物修補材料之抗壓強度 45
4.2 欲修補之混凝土抗壓強度 50
4.3 爐石基無機聚合物修補卜特蘭混凝土之黏結性質 51
4.3.1 爐石基無機聚合物修補後斜剪強度 51
4.3.2 爐石基無機聚合物修補後之劈裂強度 59
4.3.3 應用音射法於爐石基無機聚合物修補後之劈裂強度 61
4.3.4 爐石基無機聚合物修補後之抗彎強度 65
4.3.5 破壞模式 67
4.3.6 對比材料之比較 70
4.4 微觀分析 71
4.4.1 掃描式電子顯微鏡 (SEM) 71
第五章 結論與建議 75
5.1結論 75
5.2建議 76
參考文獻 77


參考文獻
1.李政壕,「聚合物應用於水泥修補砂漿性質之研究」,碩士論文,國立臺灣海洋大學河海工程學系,基隆,2010。
2.J. Davidovits., “Geopolymer: inorganic polymeric new meterials”, Thermal Analysis, 37, 1633–1656, 1991.
3.J. Davidovits., “X-Ray Analysis and X-Ray Diffraction of Casing Stones from the Pryramids of Egypt and the Limestone of the Associated Quarries”, Science In Egyptology Symposta, 511–520, 1984.
4.阮國瑋,無機聚合技術應用於水庫淤泥製備建築材料之研究,碩士論文,國立台北科技大學,2015。
5.J. G. S. Van Jaarsveld, J. S. J. van Deventer, L. Lorenzen., “Factors affecting the immobilization of metals in geopolymerized fly ash”, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 29, 283–291, 1998.
6.J. Davidovits., “Geopolymer Chemistry & Application”, France: Institute Geopolymere, 394–395, 2008.
7.P. Duxson, A. Fernandez-Jimenez, J. L. Provis, G. C. Lukey, A. Palomo, J. S. J. van Deventer., “Geopolymer technology: the current state of the art”, Journal of Material Science, 42, 2917–2933, 2007.
8.V. F. F. Barbosa, K. J. D. MacKenzie, C. Thaumaturgo., “Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”, Internatiomal Journal of Inorganic Materials, 2, 309–317, 2000
9.Palomo, A, M. W. Grutzeck, M. T. Blanco., “Alkali-activated fly ashes: A cement for the future”, Cement and Concrete Research, 29, 1323–1329, 1999.
10.Huanhai, Z, Xuequan, W, Zhongzi, X., “Kinetic Study on Hydration of Alkali-activated Slag”, Cement and Concrete Research, 23, 1253–1258, 1993
11.J. Davidovits., Chemistry of geopolymeric systems terminology. Proceedings of Geopolymere 99 Second International Conference, Editors: Joseph Davidovits, Ralph Davidovits and Claude James, Institut Geopolymere, Saint-Quentin, France, 9–40, 1999.
12.Xu, H, J.S.J. Van Dalumino-silicate minerals, International Journal of Mineral Processing, 59(3), 247–266, 2000.
13.陳冠宇,鹼激發爐石基膠體配比因子對其工程性質影響之研究,碩士論文,國立台灣科技大學,2010。
14.林育緯,「不同激發劑對爐石飛灰無機聚合物工程性質之影響」,碩士論文,國立台灣科技大學營建工程系,台北,2012。
15.F.N. Okoye , J. Durgaprasad , N.B. Singh., “Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete”, Construction and Building Materials 98 (2015) 685–691.
16.C. Shi, R. L. Day., “A calorimetric study of early hydration of alkali-slag cement”, Cement and Concrete Research, 25(6), 1333–1346, 1995.
17.C. Shi, R. L. Day., “Some factors affecting early hydration of alkali-slag cement”, Cement and Concrete Research, 26(3), 439–447, 1996.
18.Chao-Lung Hwang, Trong-Phuoc Huynh., “Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers”, Construction and Building Materials, 101, 1–9, 2015
19.P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, U. Rattanasak., “Comparative study on the characteristics of fly ash and bottom ash geopolymers”, Waste Manage, 29, 539–543, 2009.
20.K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, P. Chindaprasirt., “NaOHactivated ground fly ash geopolymer cured at ambient temperature”, Fuel, 90, 2118–2124, 2011.
21.付興華、陶文宏、孫鳳金,「水玻璃對地聚物凝膠材料性能影響的研究」,水泥工程,濟南,第二期,第6-10頁,2008。
22.Komnitasa, K., Zaharaki, D., Perdikatsis, V., “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers”, Journal of Hazardous Materials, 161(2-3), 760–768, 2009
23.蕭志遠,鹼活化電弧爐還原碴之水化反應特性,碩士論文,國立中央大學,2002。
24.Partha Sarathi Deb , Pradip Nath , Prabir Kumar Sarker., “The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature”, Construction and Building Materials 62 (2014) 32–39.
25.呂軒志,「無機聚合物工程特性及影響因素暨應用於混凝土缺陷修補研究」,博士論文,國立台北科技大學工程科技研究所,台北,2013。
26.Violeta Nikolic , Miroslav Komljenovic , Zvezdana Bascarevic , Natasa Marjanovic , Zoran Miladinovic , Rada Petrovic., “The influence of fly ash characteristics and reaction conditions on strength and structure of geopolymers”, Construction and Building Materials 94 (2015) 361–370.
27.Deepak Ravikumar , Sulapha Peethamparan , Narayanan Neithalath., “Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder”, Cement and Concrete Composites 32 (2010) 399–410.
28.E. Vasconcelos , S. Fernandes , J.L. Barroso de Aguiar , F. Pacheco-Torgal ., “Concrete retrofitting using metakaolin geopolymer mortars and CFRP”, Construction and Building Materials, 25 (2011) 3213–3221.
29.Peem Nuaklong , Vanchai Sata., “Influence of recycled aggregate on fly ash geopolymer concrete properties”, Journal of Cleaner Production 112 (2016) 2300–2307.
30.Fernando Pacheco-Torgal , J.P. Castro-Gomes , Said Jalali., “Investigations on mix design of tungsten mine waste geopolymeric binder”, Construction and Building Materials 22 (2008) 1939–1949.
31.Tanakorn Phoo-ngernkham , Vanchai Sata , Sakonwan Hanjitsuwan , Charoenchai Ridtirud , Shigemitsu Hatanaka , Prinya Chindaprasirt., “High calcium fly ash geopolymer mortar containing Portland cement for use as repair material” ,Construction and Building Materials 98 (2015) 482–488.
32.Mohammad-Javad Khalaj , Ali Khoshakhlagh , Sirous Bahri , Mahdi Khoeini , Mohsen Nazerfakhari., “Split tensile strength of slag-based geopolymer composites reinforced with steel fibers: Application of Taguchi method in evaluating the effect of production parameters and their optimum condition”, Ceramics International 41 (2015) 10697–10701.
33.Ali Bagheri , Ali Nazari., “Compressive strength of high strength class C fly ash-based geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method”, Materials and Design 54 (2014) 483–490.
34.湛淵源、黃兆龍、郭金祥、林中玉 (2002),地震後結構體修補材料耐久性之探討,應用於土木結構之耐震材料研發期中研究成果論文集,第7-1~7-38 頁。
35.N.Ganesan , Ruby Abraham , S. Deepa Raj., “Durability characteristics of steel fibre reinforced geopolymer concrete”, Construction and Building Materials 93 (2015) 471–476.
36.Robert J. Thomas, Sulapha Peethamparan., “Alkali-activated concrete: Engineering properties and stress–strain behavior”, Construction and Building Materials 93 (2015) 49–56.
37.A. Momayez , M.R. Ehsani , A.A. Ramezanianpour , H. Rajaie., “Comparison of methods for evaluating bond strength between concrete substrate and repair materials”, Cement and Concrete Research 35 (2005) 748–757.
38.Nihad Tareq Khshain , Riadh Al-Mahaidi , Kamiran Abdouka., “Bond behaviour between NSM CFRP strips and concrete substrate using single-lap shear testing with epoxy adhesive”, Composite Structures 132 (2015) 205–214.
39.Fernando Pacheco-Torgal , J.P. Castro-Gomes , Said Jalali., “Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment”, Construction and Building Materials 22 (2008) 154–161.
40.黃立遠,「飛灰基無機聚合物工程性質及應用之研究」,博士論文,國立台灣科技大學營建工程系,台北,2010。
41.Hani Alanazi , Mijia Yang , Dalu Zhili (Jerry) Gao., “Bond strength of PCC pavement repairs using metakaolin-based geopolymer mortar”, Cement and Concrete Composites 65 (2016) 75–82.
42.Tanakorn Phoo-ngernkham , Akihiro Maegawa , Naoki Mishima , Shigemitsu Hatanaka , Prinya Chindaprasirt., “Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer”, Construction and Building Materials 91 (2015) 1–8.
43.Masayasu Ohtsu., “Elastic wave methods for NDE in concrete based on generalized theory of acoustic emission”, Construction and Building Materials, 122 (2016) 845–854.
44.H. Mihashi, N. Nomura, S. Niiseki., “Influence of aggregate size on fracture process zone of concrete detected with three dimensional acoustic emission technique”, Cement and Concrete Research 21 (1991) 737–744
45.M.A.A. Aldahdooh, N. Muhamad Bunnori , M.A. Megat Johari., “Damage evaluation of reinforced concrete beams with varying thickness using the acoustic emission technique”,Construction and Building Materials 44 (2013) 812–821.
46.Mitsuhiro Shigeishi, Masayasu Ohtsu., “Acoustic emission moment tensor analysis: development for crack identification in concrete materials”, Construction and Building Materials, 15 (2001) 311–319.
47.Tomoki Shiotani, Mitsuhiro Shigeishi, Masayasu Ohtsu., “Acoustic emission characteristics of concrete-piles”, Construction and Building Materials, 13 (1999) 73–85.
48.Tetsuya Suzuki, Masayasu Ohtsu., “Quantitative damage evaluation of structural concrete by a compression test based on AE rate process analysis”, Construction and Building Materials, 18 (2004) 197–202.
49.Bing Chen, Juanyu Liu., “Experimental study on AE characteristics of three-point-bending concrete beams”, Cement and Concrete Research 34 (2004) 391–397
50.Keru Wu , Bing Chen , Wu Yao ., “Study on the AE characteristics of fracture process of mortar, concrete and steel-fiber-reinforced concrete beams”, Cement and Concrete Research, 30 (2000) 1495–1500.
51.A. Carpinteri, G. Lacidogna, M. Corrado, E. Di Battista., “Cracking and crackling in concrete-like materials: A dynamic energy balance”, Engineering Fracture Mechanics 155 (2016) 130–144.
52.CNS 14842., “高流動性混凝土坍流度試驗法” Annual Book of CNS Standard, 2004.
53.ASTM C191., “Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle” Annual Book of ASTM Standard, 2013.
54.ASTM C109., “Standard Test Method for Comprehensive Strength of Hydrolic Cement Mortars” Annual Book of ASTM Standard, 2013.
55.ASTM C882., “Standard Test Method for Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear ” Annual Book of ASTM Standard, 2013.
56.ASTM C496., “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens” Annual Book of ASTM Standard, 2004.
57.ASTM C293., “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)” Annual Book of ASTM Standard, 2016.
58.陳冠穎,「應用超音波及音射法評估實驗室模擬火害前後與再水化水泥混凝土微觀結構」,碩士論文,國立高雄應用科技大學土木工程系,高雄,2016。
59.CNS 1010., “水硬性水泥墁料抗壓強度檢驗法(用50mm或2in.立方體試體)” Annual Book of CNS Standard, 1993.
60.Gengying Li, Huicai Xie, Guangjing Xiong., “Transition zone studies of new-to-old concrete with different binders”, Cement and Concrete Composites 23 (2001) 381–387.
61.Gengying Li., “A new way to increase the long-term bond strength of new-to-old concrete by the use of fly ash”, Cement and Concrete Research 33 (2003) 799–806.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊